Menu Close

I-sin-3-cosx-4-dx-




Question Number 122468 by SOMEDAVONG last updated on 17/Nov/20
I.∫sin(3−cosx)^4 dx=?
$$\mathrm{I}.\int\mathrm{sin}\left(\mathrm{3}−\mathrm{cosx}\right)^{\mathrm{4}} \mathrm{dx}=? \\ $$
Answered by Dwaipayan Shikari last updated on 17/Nov/20
∫sinx(3−cosx)^4 dx    3−cosx=t⇒sinx=(dt/dx)  ∫t^4 dt=(1/5)t^5 +C=(1/5)(3−cosx)^5 +C
$$\int{sinx}\left(\mathrm{3}−{cosx}\right)^{\mathrm{4}} {dx}\:\:\:\:\mathrm{3}−{cosx}={t}\Rightarrow{sinx}=\frac{{dt}}{{dx}} \\ $$$$\int{t}^{\mathrm{4}} {dt}=\frac{\mathrm{1}}{\mathrm{5}}{t}^{\mathrm{5}} +{C}=\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{3}−{cosx}\right)^{\mathrm{5}} +{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *