Menu Close

i-want-of-ask-in-mechanics-is-this-possible-power-work-done-time-taken-if-power-p-w-Work-W-d-and-time-t-p-w-W-d-t-but-W-d-force-f-distance-s-W-d-fs-p-w-f-s-




Question Number 59104 by Forkum Michael Choungong last updated on 04/May/19
i want of ask in mechanics is this  possible??    power=((work done)/(time taken))  if power = p_w  , Work= W_d , and time=t  ⇒ p_w = (W_d /t)  but W_d = force(f)×distance(s)          W_d = fs  ⇒ p_w = ((f×s)/t)       p_w = f × (s/t)(distance/time)     p_w = f × velocity     but f=ma  p_w = m×a×v  rearranging  ⇒ p_(w ) = m×v×a        p_w = momentum(P)×Acceleration(a)  Power = momentum × Acceleration.  the momentum of a system is directly  propotional to the power of that system  but will have a minimum momentum  when accelerating.    what do you think?
$${i}\:{want}\:{of}\:{ask}\:{in}\:{mechanics}\:{is}\:{this} \\ $$$${possible}?? \\ $$$$ \\ $$$${power}=\frac{{work}\:{done}}{{time}\:{taken}} \\ $$$${if}\:{power}\:=\:{p}_{{w}} \:,\:{Work}=\:{W}_{{d}} ,\:{and}\:{time}={t} \\ $$$$\Rightarrow\:{p}_{{w}} =\:\frac{{W}_{{d}} }{{t}} \\ $$$${but}\:{W}_{{d}} =\:{force}\left({f}\right)×{distance}\left({s}\right) \\ $$$$\:\:\:\:\:\:\:\:{W}_{{d}} =\:{fs} \\ $$$$\Rightarrow\:{p}_{{w}} =\:\frac{{f}×{s}}{{t}} \\ $$$$\:\:\:\:\:{p}_{{w}} =\:{f}\:×\:\frac{{s}}{{t}}\left({distance}/{time}\right) \\ $$$$\:\:\:{p}_{{w}} =\:{f}\:×\:{velocity} \\ $$$$\:\:\:{but}\:{f}={ma} \\ $$$${p}_{{w}} =\:{m}×{a}×{v} \\ $$$${rearranging} \\ $$$$\Rightarrow\:{p}_{{w}\:} =\:{m}×{v}×{a} \\ $$$$\:\:\:\:\:\:{p}_{{w}} =\:{momentum}\left({P}\right)×{Acceleration}\left({a}\right) \\ $$$${Power}\:=\:{momentum}\:×\:{Acceleration}. \\ $$$${the}\:{momentum}\:{of}\:{a}\:{system}\:{is}\:{directly} \\ $$$${propotional}\:{to}\:{the}\:{power}\:{of}\:{that}\:{system} \\ $$$${but}\:{will}\:{have}\:{a}\:{minimum}\:{momentum} \\ $$$${when}\:{accelerating}. \\ $$$$ \\ $$$${what}\:{do}\:{you}\:{think}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *