Menu Close

i-want-the-formolla-of-taylor-and-maclorien-series-of-this-function-1-f-x-ln-x-2-f-x-sec-x-3-f-x-csc-x-4-f-x-cot-x-5-f-x-tan-x-6-f-x-sech-x




Question Number 145874 by Mrsof last updated on 09/Jul/21
i want the formolla of taylor and maclorien   series of this function  (1)f(x)=ln(x )               (2)f(x)=sec(x)    (3)f(x)=csc(x)              (4)f(x)=cot(x)    (5)f(x)=tan(x)              (6)f(x)=sech(x)    (7)f(x)=tanh(x)        (8)f(x)=csch(x)    (9)f(x)=coth(x)         (10)f(x)=cosh(x)    how can help me please
iwanttheformollaoftaylorandmaclorienseriesofthisfunction(1)f(x)=ln(x)(2)f(x)=sec(x)(3)f(x)=csc(x)(4)f(x)=cot(x)(5)f(x)=tan(x)(6)f(x)=sech(x)(7)f(x)=tanh(x)(8)f(x)=csch(x)(9)f(x)=coth(x)(10)f(x)=cosh(x)howcanhelpmeplease
Commented by Mrsof last updated on 09/Jul/21
???????
???????
Answered by Olaf_Thorendsen last updated on 09/Jul/21
(2)  f(x) = sec(x) = (1/(cosx))  f(x) = Σ_(n=0) ^∞ (E_(2n) /((2n)!))x^(2n)   (3)  f(x) = csc(x) = (1/(sinx))  f(x) = (1/x)+Σ_(n=1) ^∞ ∣B_(2n) ∣((2(2^(2n−1) −1))/((2n)!))x^(2n) , 0<∣x∣<π  (4)  f(x) = cot(x)  f(x) = (1/x)−Σ_(n=1) ^∞ ∣B_(2n) ∣(2^(2n) /((2n)!))x^(2n−1) , 0<∣x∣<π  (5)  f(x) = tan(x)  f(x) = Σ_(n=1) ^∞ ∣B_(2n) ∣((2^(2n) (2^(2n) −1))/((2n)!))x^(2n−1) , ∣x∣<(π/2)  (6)  f(x) = sech(x) = (1/(ch(x)))  f(x) = Σ_(n=0) ^∞ (−1)^n (E_(2n) /((2n)!))x^(2n)   (7)  f(x) = tanh(x)  f(x) = Σ_(n=1) ^∞ B_(2n) ((2^(2n) (2^(2n) −1))/((2n)!))x^(2n−1) , ∣x∣<(π/2)  (8)  f(x) = csch(x) = (1/(sh(x))) = ((2e^x )/(e^(2x) −1))  f(x) = (1/x)−Σ_(n=1) ^∞ B_(2n) ((2(2^(2n) −1))/((2n)!))x^(2n−1) , 0<∣x∣<π  (9)  f(x) = coth(x)  f(x) = (1/x)+Σ_(n=1) ^∞ B_(2n) (2^(2n) /((2n)!))x^(2n−1) , 0<∣x∣<π  (10)  f(x) = cosh(x)  f(x) = Σ_(n=0) ^∞ (1/((2n)!))x^(2n)
(2)f(x)=sec(x)=1cosxf(x)=n=0E2n(2n)!x2n(3)f(x)=csc(x)=1sinxf(x)=1x+n=1B2n2(22n11)(2n)!x2n,0<∣x∣<π(4)f(x)=cot(x)f(x)=1xn=1B2n22n(2n)!x2n1,0<∣x∣<π(5)f(x)=tan(x)f(x)=n=1B2n22n(22n1)(2n)!x2n1,x∣<π2(6)f(x)=sech(x)=1ch(x)f(x)=n=0(1)nE2n(2n)!x2n(7)f(x)=tanh(x)f(x)=n=1B2n22n(22n1)(2n)!x2n1,x∣<π2(8)f(x)=csch(x)=1sh(x)=2exe2x1f(x)=1xn=1B2n2(22n1)(2n)!x2n1,0<∣x∣<π(9)f(x)=coth(x)f(x)=1x+n=1B2n22n(2n)!x2n1,0<∣x∣<π(10)f(x)=cosh(x)f(x)=n=01(2n)!x2n
Commented by tabata last updated on 09/Jul/21
thank you sir but whats the mean B_(2n)  and E_(2n)
thankyousirbutwhatsthemeanB2nandE2n
Commented by Olaf_Thorendsen last updated on 09/Jul/21
E_k  = Euler numbers.  B_k  = Bernoulli numbers.
Ek=Eulernumbers.Bk=Bernoullinumbers.

Leave a Reply

Your email address will not be published. Required fields are marked *