Question Number 103073 by Faetma last updated on 12/Jul/20
$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{write} \\ $$$$\int_{\mathrm{0}} ^{{a}+{ib}} {f}\left({x}\right)\mathrm{d}{x} \\ $$$$\mathrm{but}\:\mathrm{with}\:\mathrm{the}\:\mathrm{form} \\ $$$$\alpha+{i}\beta \\ $$$$\mathrm{How}\:\mathrm{write}\:\mathrm{that}? \\ $$$$\mathrm{Sorry}\:\mathrm{for}\:\mathrm{my}\:\mathrm{bad} \\ $$$$\mathrm{english} \\ $$
Answered by abdomsup last updated on 12/Jul/20
$${not}\:{possible}\:{if}\:\:{f}\:{is}\:{not}\:{linear} \\ $$
Commented by Faetma last updated on 12/Jul/20
$$\mathrm{Here}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{ln}\:{x}} \\ $$
Commented by prakash jain last updated on 12/Jul/20
$$\int_{\mathrm{0}} ^{\alpha+{k}\beta} \frac{\mathrm{1}}{\mathrm{ln}{x}}{dx} \\ $$$$\int\rightarrow{superscript}\:\rightarrow{green}\alpha\rightarrow\alpha \\ $$