Menu Close

I-x-3-2x-2-7x-1-x-3-3-x-2-2-dx-




Question Number 86638 by M±th+et£s last updated on 29/Mar/20
I=∫((x^3 −2x^2 +7x−1)/((x−3)^3 (x−2)^2 ))dx
$${I}=\int\frac{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by MJS last updated on 29/Mar/20
((x^3 −2x^2 +7x−1)/((x−3)^3 (x−2)^2 ))=  =((29)/((x−3)^3 ))−((36)/((x−3)^2 ))+((50)/(x−3))−((13)/((x−2)^2 ))−((50)/(x−2))  ⇒  I=((98x^2 +545x+724)/(2(x−3)^2 (x−2)))+50ln ∣((x−3)/(x−2))∣ +C  or  t=((x−3)/(x−2)) → dx=(x−2)^2 dt  ⇒  I=−13∫dt+50∫(dt/t)−65∫(dt/t^2 )+29∫(dt/t^3 )  and now it′s easy
$$\frac{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{29}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} }−\frac{\mathrm{36}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{50}}{{x}−\mathrm{3}}−\frac{\mathrm{13}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }−\frac{\mathrm{50}}{{x}−\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${I}=\frac{\mathrm{98}{x}^{\mathrm{2}} +\mathrm{545}{x}+\mathrm{724}}{\mathrm{2}\left({x}−\mathrm{3}\right)^{\mathrm{2}} \left({x}−\mathrm{2}\right)}+\mathrm{50ln}\:\mid\frac{{x}−\mathrm{3}}{{x}−\mathrm{2}}\mid\:+{C} \\ $$$$\mathrm{or} \\ $$$${t}=\frac{{x}−\mathrm{3}}{{x}−\mathrm{2}}\:\rightarrow\:{dx}=\left({x}−\mathrm{2}\right)^{\mathrm{2}} {dt} \\ $$$$\Rightarrow \\ $$$${I}=−\mathrm{13}\int{dt}+\mathrm{50}\int\frac{{dt}}{{t}}−\mathrm{65}\int\frac{{dt}}{{t}^{\mathrm{2}} }+\mathrm{29}\int\frac{{dt}}{{t}^{\mathrm{3}} } \\ $$$$\mathrm{and}\:\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *