Menu Close

i-y-4y-5y-4sin-2-4x-ii-x-2-1-1-x-2-




Question Number 120050 by bramlexs22 last updated on 29/Oct/20
 (i) y′′−4y′+5y=4sin^2 4x   (ii) (x/2)+1 = (√(∣1−x^2 ∣))
(i)y4y+5y=4sin24x(ii)x2+1=1x2
Answered by bemath last updated on 29/Oct/20
(•) ((x+2)/2) = (√(∣1−x^2 ∣)) defined on x ≥−2   ⇔ squaring both sides  (((x+2)^2 )/4) = ∣1−x^2 ∣   case(1) for −1≤x≤1 ⇒((x^2 +4x+4)/4)=1−x^2   ⇒x^2 +4x+4=4−4x^2   ⇒5x^2 +4x = 0 ; x(5x+4)=0  { ((x_1 =0)),((x_2 =−(4/5))) :}  case(2) for x≤−1 ∪ x≥1⇒((x^2 +4x+4)/4)=x^2 −1  ⇒x^2 +4x+4=4x^2 −4 ; 3x^2 −4x−8=0  x = ((4 ± (√(16−4.3.(−8))))/6) = ((4 ± (√(112)))/6)  x_(3.4)  = ((4±4(√7))/6) = (2/3) ± ((2(√7))/3)  The solution set is {−(4/5), ((2−2(√7))/3), 0, ((2+2(√7))/3) }
()x+22=1x2definedonx2squaringbothsides(x+2)24=1x2case(1)for1x1x2+4x+44=1x2x2+4x+4=44x25x2+4x=0;x(5x+4)=0{x1=0x2=45case(2)forx1x1x2+4x+44=x21x2+4x+4=4x24;3x24x8=0x=4±164.3.(8)6=4±1126x3.4=4±476=23±273Thesolutionsetis{45,2273,0,2+273}
Answered by Lordose last updated on 29/Oct/20
i   ((d^2 (y))/dx) − 4(dy/dx) + 5y = 4sin^2 4x  y(x) = y_c (x) + y_p (x)  y_c (x) = ((d^2 (y))/dx) − 4(dy/dx) +5y=0  set y = e^(kx)   k^2 e^(kx)  − 4ke^(kx)  + 5e^(kx)  = 0  e^(kx) (k^2 −4k+5)=0  e^(kx)  ≠ 0 ∀ k∈R  k^2 −4k+5=0  k=2±i where i=(√((−1)))  y_1 (x)= c_1 e^((2+i)x)   and y_2 (x) = c_2 e^((2+i)x)   y_c (x)=y_1 (x) + y_2 (x)  Recall: e^(x+iy)  = e^x cosy + ie^x siny  y_c (x) = c_1 (e^(2x) cos(x) + ie^(2x) sin(x)) + c_2 (e^(2x) cos(x)−ie^(2x) sin(x))  y_c (x) = (c_1 +c_2 )e^(2x) cos(x) + i(c_1 −c_2 )e^(2x) sin(x)  let c_1 +c_2 = k_1  and i(c_1 −c_2 )=k_2   y_c (x) = k_1 e^(2x) cos(x) + k_2 e^(2x) sin(x)  Next, We find y_p (x) by method of undetermined coefficient  y_p (x) = ((d^2 y_p (x))/dx^2 ) − 4((dy_p (x))/dx) + 5y_p (x) = 2−2cos(8x) { 4sin^2 (4x)= 2−cos(8x)}  The particular solution of  (d^2 y/dx^2 ) − 4(dy/dx) + 5y = 2 is in the form y_(p1) (x)=a_1   And the particular solution of (d^2 y/dx) − 4(dy/dx) + 5y=−2cos(8x) is in the form  y_(p2) (x)=a_2 cos(8x) + a_3 sin(8x)  y_p (x) = y_(p1) (x) + y_(p2) (x)  y_p (x) = a_1  + a_2 cos(8x) + a_3 sin(8x)  ((dy_p (x))/dx) = −8a_2 sin(8x) + 8a_3 cos(8x)  ((d^2 y_p (x))/dx) = −64a_2 cos(8x) − 64a_3 sin(8x)  Sub for y_p (x)  −64a_2 cos(8x)−64a_3 sin(8x)−4(8a_3 cos(8x)−8a_2 sin(8x))+5(a_1 +a_2 cos(8x)+a_3 sin(8x))  factorising, we have:  5a_1  + (−59a_2 −32a_3 )cos(8x)+(32a_2 −59a_3 )sin(8x)= 2−2cos(8x)   5a_1  = 2   59a_2  + 32a_3  = 2  32a_2  − 59a_3  = 0  Hence, a_1  = (2/5) , a_2  = ((118)/(4505)) , a_3  = ((64)/(4505))  y_p (x) = a_1  + a_2 cos(8x) + a_3 sin(8x)  y_p (x) = (2/5) + ((118cos(8x))/(4505)) + ((64sin(8x))/(4505))  y(x) = y_c (x) + y_p (x)  y(x) = k_1 e^(2x) cosx + k_2 e^(2x) sinx + ((118cos(8x))/(4505)) + ((64sin(8x))/(4505)) + (2/5)
id2(y)dx4dydx+5y=4sin24xy(x)=yc(x)+yp(x)yc(x)=d2(y)dx4dydx+5y=0sety=ekxk2ekx4kekx+5ekx=0ekx(k24k+5)=0ekx0kRk24k+5=0k=2±iwherei=(1)y1(x)=c1e(2+i)xandy2(x)=c2e(2+i)xyc(x)=y1(x)+y2(x)Recall:ex+iy=excosy+iexsinyyc(x)=c1(e2xcos(x)+ie2xsin(x))+c2(e2xcos(x)ie2xsin(x))yc(x)=(c1+c2)e2xcos(x)+i(c1c2)e2xsin(x)letc1+c2=k1andi(c1c2)=k2yc(x)=k1e2xcos(x)+k2e2xsin(x)Next,Wefindyp(x)bymethodofundeterminedcoefficientyp(x)=d2yp(x)dx24dyp(x)dx+5yp(x)=22cos(8x){4sin2(4x)=2cos(8x)}Theparticularsolutionofd2ydx24dydx+5y=2isintheformyp1(x)=a1Andtheparticularsolutionofd2ydx4dydx+5y=2cos(8x)isintheformyp2(x)=a2cos(8x)+a3sin(8x)yp(x)=yp1(x)+yp2(x)yp(x)=a1+a2cos(8x)+a3sin(8x)dyp(x)dx=8a2sin(8x)+8a3cos(8x)d2yp(x)dx=64a2cos(8x)64a3sin(8x)Subforyp(x)64a2cos(8x)64a3sin(8x)4(8a3cos(8x)8a2sin(8x))+5(a1+a2cos(8x)+a3sin(8x))factorising,wehave:5a1+(59a232a3)cos(8x)+(32a259a3)sin(8x)=22cos(8x)5a1=259a2+32a3=232a259a3=0Hence,a1=25,a2=1184505,a3=644505yp(x)=a1+a2cos(8x)+a3sin(8x)yp(x)=25+118cos(8x)4505+64sin(8x)4505y(x)=yc(x)+yp(x)y(x)=k1e2xcosx+k2e2xsinx+118cos(8x)4505+64sin(8x)4505+25
Answered by Bird last updated on 29/Oct/20
y^(′′) −4y^′  +5y =4×((1−cos(8x))/2) ⇒  y^(′′) −4y^(′ ) +5y =2−2cos(8x)  h→r^2 −4r+5=0→Δ^′ =4−5=−1  ⇒r_1 =2+i and r_2 =2−i  y_h =ae^((2+i)x)  +be^((2−i)x)   =e^(2x) {αcosx +βsinx}  =α e^(2x) cosx +β e^(2x) sinx =αu_1  +βu_2   W(u_1 ,u_2 )= determinant (((e^(2x) cosx                                  e^(2x) sinx)),((e^(2x) (2cosx−sinx)    e^(2x) (2sinx +cosx)     )))  =e^(4x) (2sinx+cosx)cosx−e^(4x) (2cosx−sinx)sinx  =e^(4x) {2sinx cosx+cos^2 x−2cosxsinx+sin^2 x}  =e^(4x ) ≠0  W_1 = determinant (((o            e^(2x) sinx)),((2−2cos(8x)  e^(2x) (2sinx+cosx))))  =−2e^(2x) (1−cos(8x)sinx  W_2 = determinant (((e^(2x) cosx        0)),((e^(2x) (2cosx−sinx)   2−2cos(8x))))  =2e^(2x) (1−cos(8x))cosx  V_1 =∫ (W_1 /W)dx =−∫((2e^(2x) (1−cos)8x)sinx)/e^(4x) )dx  =−2 ∫ e^(−2x) (1−cos(8x))sinx dx  =−2∫ e^(−2x) sinx dx+2∫ e^(−2x) cos(8x)sinx dx  ∫ e^(−2x) sinx dx =Im(∫ e^(−2x+ix) dx)  ∫ e^((−2+i)x) dx =(1/(−2+i))e^((−2+i)x)   =((−1(2+i)e^(−2x) (cosx +isinx))/5)  =−(1/5)e^(−2x) (2cosx+2isinx+icosx  −sinx) ⇒  ∫ e^(−2x) sinx dx =−(1/5)e^(−2x) {2sinx +cosx}  we have cos(8x)sinx  =cos(8x)cos((π/2)−x)  =(1/2){cos(7x+(π/2))+cos(9x−(π/2)))  =(1/2){−sin(7x)+sin(9x)} ⇒  2∫ e^(−2x) cos(8x)sinx dx  =∫ e^(−2x)  sin(9x)dx−∫ e^(−2x) sin(7x)dx  =....(eszy to find)  V_2 =∫ (W_2 /W)dx =∫ ((2e^(2x) (1−cos(8x)cosx)/e^(4x) )dx  =∫ 2 e^(−2x) cosx dx−2∫ e^(2x) cos(8x)cosxdx  =....(use same way...) ⇒  y_p =u_1 v_1 +u_2 v_2  and general solution  is y =y_p  +y_h
y4y+5y=4×1cos(8x)2y4y+5y=22cos(8x)hr24r+5=0Δ=45=1r1=2+iandr2=2iyh=ae(2+i)x+be(2i)x=e2x{αcosx+βsinx}=αe2xcosx+βe2xsinx=αu1+βu2W(u1,u2)=|e2xcosxe2xsinxe2x(2cosxsinx)e2x(2sinx+cosx)|=e4x(2sinx+cosx)cosxe4x(2cosxsinx)sinx=e4x{2sinxcosx+cos2x2cosxsinx+sin2x}=e4x0W1=|oe2xsinx22cos(8x)e2x(2sinx+cosx)|=2e2x(1cos(8x)sinxW2=|e2xcosx0e2x(2cosxsinx)22cos(8x)|=2e2x(1cos(8x))cosxV1=W1Wdx=2e2x(1cos)8x)sinxe4xdx=2e2x(1cos(8x))sinxdx=2e2xsinxdx+2e2xcos(8x)sinxdxe2xsinxdx=Im(e2x+ixdx)e(2+i)xdx=12+ie(2+i)x=1(2+i)e2x(cosx+isinx)5=15e2x(2cosx+2isinx+icosxsinx)e2xsinxdx=15e2x{2sinx+cosx}wehavecos(8x)sinx=cos(8x)cos(π2x)=12{cos(7x+π2)+cos(9xπ2))=12{sin(7x)+sin(9x)}2e2xcos(8x)sinxdx=e2xsin(9x)dxe2xsin(7x)dx=.(eszytofind)V2=W2Wdx=2e2x(1cos(8x)cosxe4xdx=2e2xcosxdx2e2xcos(8x)cosxdx=.(usesameway)yp=u1v1+u2v2andgeneralsolutionisy=yp+yh

Leave a Reply

Your email address will not be published. Required fields are marked *