Menu Close

If-0-1-then-prove-that-1-1-1-lt-1-




Question Number 176453 by mnjuly1970 last updated on 19/Sep/22
     If ,  α , β , γ ∈ ( 0  ,  1 )  ,  then             prove  that :               (√((1−^ α ).(1−^ β ). (1−^ γ ))) +(√(α^ .β^ .γ^ ))  < 1
If,α,β,γ(0,1),thenprovethat:(1α).(1β).(1γ)+α.β.γ<1
Answered by ajfour last updated on 19/Sep/22
say α=sin^2 θ  β=sin^2 φ , γ=sin^2 δ  l.h.s.=cos θcos φcos δ                  +sin θsin φsin δ  =((cos θ)/2){cos (φ+δ)+cos (φ−δ)}    +((sin θ)/2){cos (φ−δ)−cos (φ+δ)}  =((cos (φ+δ))/2)(cos θ−sin θ)      +((cos (φ−δ))/2)(cos θ+sin θ)  =((cos (φ+δ)cos (θ+(π/4)))/( (√2)))        +((cos (φ−δ)sin (θ+(π/4)))/( (√2)))  say  cos (φ+δ)=A            cos (φ−δ)=B  l.h.s.=(√((A^2 /2)+(B^2 /2)))sin (θ+(π/4)+tan^(−1) (A/B))     < (√((A^2 +B^2 )/2)) < (√((1/2)+(1/2))) (=1)  as  A<1  , B<1
sayα=sin2θβ=sin2ϕ,γ=sin2δl.h.s.=cosθcosϕcosδ+sinθsinϕsinδ=cosθ2{cos(ϕ+δ)+cos(ϕδ)}+sinθ2{cos(ϕδ)cos(ϕ+δ)}=cos(ϕ+δ)2(cosθsinθ)+cos(ϕδ)2(cosθ+sinθ)=cos(ϕ+δ)cos(θ+π4)2+cos(ϕδ)sin(θ+π4)2saycos(ϕ+δ)=Acos(ϕδ)=Bl.h.s.=A22+B22sin(θ+π4+tan1AB)<A2+B22<12+12(=1)asA<1,B<1
Commented by ajfour last updated on 19/Sep/22
https://youtu.be/86aXbrp2ZG0
Commented by ajfour last updated on 19/Sep/22
A small experimental educational   video of mine on youtube..
Asmallexperimentaleducationalvideoofmineonyoutube..
Commented by mnjuly1970 last updated on 19/Sep/22
bravo sir ajfor ....    i will see your youtube ..certainly
bravosirajfor.iwillseeyouryoutube..certainly
Commented by Tawa11 last updated on 20/Sep/22
Great sir
Greatsir
Answered by mr W last updated on 19/Sep/22
for 0<x<1: (√x)<(x)^(1/3)   G.M.≤A.M.    (√((1−α)(1−β)(1−γ)))+(√(αβγ))  <(((1−α)(1−β)(1−γ)))^(1/3) +((αβγ))^(1/3)   ≤((1−α+1−β+1−γ)/3)+((α+β+γ)/3)  =(3/3)=1
for0<x<1:x<x3G.M.A.M.(1α)(1β)(1γ)+αβγ<(1α)(1β)(1γ)3+αβγ31α+1β+1γ3+α+β+γ3=33=1
Commented by mnjuly1970 last updated on 19/Sep/22
bravo sir W...thanks alot
bravosirWthanksalot
Commented by Tawa11 last updated on 20/Sep/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *