Menu Close

If-0-e-x-2-dx-pi-2-then-prove-that-0-e-ax-2-dx-pi-4a-where-a-gt-0-




Question Number 43147 by rahul 19 last updated on 07/Sep/18
If   ∫_0 ^∞  e^(−x^2 ) dx = ((√π)/(2 )) ,  then prove that ∫_0 ^∞ e^(−ax^2 ) dx = (√(π/(4a)))  where a>0.
$$\mathrm{If}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−{x}^{\mathrm{2}} } {dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}\:}\:, \\ $$$$\mathrm{then}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{a}{x}^{\mathrm{2}} } {dx}\:=\:\sqrt{\frac{\pi}{\mathrm{4a}}} \\ $$$$\mathrm{where}\:\mathrm{a}>\mathrm{0}. \\ $$
Commented by MrW3 last updated on 07/Sep/18
let t=(√a)x  dt=(√a)dx  dx=(dt/( (√a)))  ∫_0 ^∞ e^(−ax^2 ) dx  =∫_0 ^∞ e^(−t^2 ) (dt/( (√a)))  =(1/( (√a)))∫_0 ^∞ e^(−t^2 ) dt  =(1/( (√a)))×((√π)/2)  =(√(π/(4a)))
$${let}\:{t}=\sqrt{{a}}{x} \\ $$$${dt}=\sqrt{{a}}{dx} \\ $$$${dx}=\frac{{dt}}{\:\sqrt{{a}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}^{\mathrm{2}} } {dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{2}} } \frac{{dt}}{\:\sqrt{{a}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{a}}}×\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$=\sqrt{\frac{\pi}{\mathrm{4}{a}}} \\ $$
Commented by rahul 19 last updated on 07/Sep/18
thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *