Menu Close

If-0-e-x-2-dx-pi-2-then-prove-that-0-e-ax-2-dx-pi-4a-where-a-gt-0-




Question Number 43147 by rahul 19 last updated on 07/Sep/18
If   ∫_0 ^∞  e^(−x^2 ) dx = ((√π)/(2 )) ,  then prove that ∫_0 ^∞ e^(−ax^2 ) dx = (√(π/(4a)))  where a>0.
If0ex2dx=π2,thenprovethat0eax2dx=π4awherea>0.
Commented by MrW3 last updated on 07/Sep/18
let t=(√a)x  dt=(√a)dx  dx=(dt/( (√a)))  ∫_0 ^∞ e^(−ax^2 ) dx  =∫_0 ^∞ e^(−t^2 ) (dt/( (√a)))  =(1/( (√a)))∫_0 ^∞ e^(−t^2 ) dt  =(1/( (√a)))×((√π)/2)  =(√(π/(4a)))
lett=axdt=adxdx=dta0eax2dx=0et2dta=1a0et2dt=1a×π2=π4a
Commented by rahul 19 last updated on 07/Sep/18
thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *