Question Number 156448 by MathSh last updated on 11/Oct/21
$$\mathrm{If}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}<\pi\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{sin}\sqrt{\mathrm{ab}}}{\mathrm{sin}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right)}\:\geqslant\:\frac{\mathrm{32a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} \sqrt{\mathrm{ab}}}{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{5}} } \\ $$
Answered by ghimisi last updated on 11/Oct/21
$${f}\left({t}\right)=\frac{{sint}}{{t}^{\mathrm{5}} }\:\searrow \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\Rightarrow{f}\left(\frac{{a}+{b}}{\mathrm{2}}\right)\leqslant{f}\left(\sqrt{{ab}}\right) \\ $$
Commented by MathSh last updated on 11/Oct/21
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{dear}\:\mathrm{Ser},\:\mathrm{thankyou} \\ $$