Menu Close

If-0-lt-x-lt-1-lt-y-lt-100-lt-z-and-satisfy-these-equations-log-2-xyz-103-1-log-2-x-1-log-2-y-1-log-2-z-1-103-Find-xyz-x-y-z-xy-yz-zx-




Question Number 106288 by ZiYangLee last updated on 04/Aug/20
If 0<x<1<y<100<z, and satisfy  these equations:   { ((log _2 (xyz)=103)),(((1/(log_2 x))+(1/(log_2 y))+(1/(log_2 z))=(1/(103)))) :}  Find xyz(x+y+z)−xy−yz−zx
$$\mathrm{If}\:\mathrm{0}<\mathrm{x}<\mathrm{1}<\mathrm{y}<\mathrm{100}<\mathrm{z},\:\mathrm{and}\:\mathrm{satisfy} \\ $$$$\mathrm{these}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{xyz}\right)=\mathrm{103}}\\{\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{y}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{z}}=\frac{\mathrm{1}}{\mathrm{103}}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)−\mathrm{xy}−\mathrm{yz}−\mathrm{zx} \\ $$
Answered by bemath last updated on 04/Aug/20
(1) xyz = 2^(103)   (2)(1/(log _2 x))+(1/(log _2 ((2^(103) /(xz)))))+(1/(log _2 (z)))=(1/(103))  (1/(log _2 x))+(1/(103−(log _2 x+log _2 z)))+(1/(log _2 z))=(1/(103))
$$\left(\mathrm{1}\right)\:\mathrm{xyz}\:=\:\mathrm{2}^{\mathrm{103}} \\ $$$$\left(\mathrm{2}\right)\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \left(\frac{\mathrm{2}^{\mathrm{103}} }{\mathrm{xz}}\right)}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{z}\right)}=\frac{\mathrm{1}}{\mathrm{103}} \\ $$$$\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{1}}{\mathrm{103}−\left(\mathrm{log}\:_{\mathrm{2}} \mathrm{x}+\mathrm{log}\:_{\mathrm{2}} \mathrm{z}\right)}+\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{2}} \mathrm{z}}=\frac{\mathrm{1}}{\mathrm{103}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *