Menu Close

if-1-1-x-n-m-0-a-m-x-m-determinate-a-m-




Question Number 98940 by mathmax by abdo last updated on 17/Jun/20
if (1/((1+x)^n )) =Σ_(m=0) ^∞  a_m x^m     determinate a_m
if1(1+x)n=m=0amxmdeterminateam
Commented by mr W last updated on 17/Jun/20
for n≥2:  (1/((1+x)^n ))=Σ_(m=0) ^∞ (−1)^m C_(n−1) ^(m+n−1) x^m
forn2:1(1+x)n=m=0(1)mCn1m+n1xm
Answered by maths mind last updated on 17/Jun/20
(∂^n /∂x^n ) (1/((1+x)))=(((−1)^n .n!)/((1+x)^(n+1) ))  ⇒(1/((1+x)^n ))=.(((−1)^n  )/(n!)) (∂^(n−1) /∂x^(n−1) ).(1/((1+x)))  =(((−1)^n )/(n!)).(∂^(n−1) /∂x^(n−1) ).(1/(1+x))=(((−1)^n )/(n!)).(∂^(n−1) /∂x^(n−1) )(Σ_(p≥0) (−1)^p x^p )  n≥2  (1/((1+x)^n ))=(((−1)^n )/(n!))Σ_(p≥n−1) (−1)^p Π_(k=0) ^(n−2) .(p−k)x^(p−(n−1))   n=0  (1/((1+x)^0 ))=1  n=1  (1/((1+x)))=Σ_(n≥0) (−1)^n x^n
nxn1(1+x)=(1)n.n!(1+x)n+11(1+x)n=.(1)nn!n1xn1.1(1+x)=(1)nn!.n1xn1.11+x=(1)nn!.n1xn1(p0(1)pxp)n21(1+x)n=(1)nn!pn1(1)pn2k=0.(pk)xp(n1)n=01(1+x)0=1n=11(1+x)=n0(1)nxn
Commented by mathmax by abdo last updated on 18/Jun/20
thank you sir .
thankyousir.
Answered by mathmax by abdo last updated on 18/Jun/20
f(x) =(1/((1+x)^n )) ⇒f(x) =Σ_(m=0) ^∞  ((f^((m)) (0))/(m!)) x^m  let determine f^((m)) (0)  f(x) =(x+1)^(−n)   =(x+1)^p    with p =−n ⇒f^((m)) (x) ={(x+1)^p }^((m))   if m>p f^((m)) (x)=0  if m≤p    we have f^((1)) (x) =p(x+1)^(p−1)   f^((2)) (x) =p(p−1)(x+1)^(p−2)  ⇒f^((m)) (x) =p(p−1)...(p−m+1)(x+1)^(p−m)   =(−n)(−n−1)....(−n−m+1)(x+1)^(−n−m)   = (−1)^m  n(n+1)....(n+m−1)(x+1)^(−n−m)  ⇒  f(x) =Σ_(m=0) ^n  ((f^((m)) (0))/(m!)) x^m  =Σ_(m=0) ^n  (((−1)^m n(n+1)...(n+m−1))/(m!)) x^m  ⇒  a_m =(((−1)^m  n(n+1)....(n+m−1))/(m!))
f(x)=1(1+x)nf(x)=m=0f(m)(0)m!xmletdeterminef(m)(0)f(x)=(x+1)n=(x+1)pwithp=nf(m)(x)={(x+1)p}(m)ifm>pf(m)(x)=0ifmpwehavef(1)(x)=p(x+1)p1f(2)(x)=p(p1)(x+1)p2f(m)(x)=p(p1)(pm+1)(x+1)pm=(n)(n1).(nm+1)(x+1)nm=(1)mn(n+1).(n+m1)(x+1)nmf(x)=m=0nf(m)(0)m!xm=m=0n(1)mn(n+1)(n+m1)m!xmam=(1)mn(n+1).(n+m1)m!

Leave a Reply

Your email address will not be published. Required fields are marked *