Menu Close

if-1-2-f-x-dx-2-then-1-4-1-x-f-x-dx-is-please-help-me-Sir-I-ve-been-trying-this-for-2-days-and-getting-stuck-




Question Number 56147 by afachri last updated on 11/Mar/19
if ∫_(  1) ^(  2)  f(x) dx = (√( 2 )), then ∫_(  1) ^(  4)  (1/( (√( x )) )) f(x) dx   is ??    please help me Sir. I′ve been trying    this for 2 days and getting stuck.
if21f(x)dx=2,then411xf(x)dxis??pleasehelpmeSir.Ivebeentryingthisfor2daysandgettingstuck.
Commented by 121194 last updated on 11/Mar/19
f(x)=(√2)  ∫_1 ^2 f(x)dx=(√2)  ∫_1 ^4 ((f(x))/( (√x)))dx=2(√2)  ∫_1 ^2 (√x)dx=(2/3)(2(√2)−1)  f(x)=((3(√(2x)))/(2(2(√2)−1)))  ∫_1 ^2 f(x)dx=(√2)  ∫_1 ^4 ((f(x))/( (√x)))dx=((9(√2))/(2(2(√2)−1)))=((9(4+(√2)))/(14))  ∫_1 ^4 ((f(x))/( (√x)))dx  u^2 =x⇒u=(√x);du=(dx/(2(√x)))⇔2du=(dx/( (√x)))  x=1⇒u=1  x=4⇒u=2  ∫_1 ^4 f(x)(dx/( (√x)))=2∫_1 ^2 f(u^2 )du
f(x)=221f(x)dx=241f(x)xdx=2221xdx=23(221)f(x)=32x2(221)21f(x)dx=241f(x)xdx=922(221)=9(4+2)1441f(x)xdxu2=xu=x;du=dx2x2du=dxxx=1u=1x=4u=241f(x)dxx=221f(u2)du
Commented by 121194 last updated on 11/Mar/19
are you sure this question is right?
areyousurethisquestionisright?
Commented by afachri last updated on 11/Mar/19
yes Sir, that′s the question is Sir
yesSir,thatsthequestionisSir
Commented by afachri last updated on 11/Mar/19
pardon me Sir. I don′t undersrand  your solution. Please rewrite it  clearly Sir.
pardonmeSir.Idontundersrandyoursolution.PleaserewriteitclearlySir.
Commented by 121194 last updated on 11/Mar/19
wierd, i don′t think that condition is enought to  determinate the other.  because unless i made a typo, there2 diferet function  such ∫_1 ^2 f(x)dx=(√2), but ∫_1 ^4 ((f(x))/( (√x)))dx gives diferent values  also given g:[1,4]→R integable on that domain,  you can always build a solution to it with  f(x)=(((√2)g(x))/(∫_1 ^2 g(x)dx));∫_1 ^2 g(x)dx≠0
wierd,idontthinkthatconditionisenoughttodeterminatetheother.becauseunlessimadeatypo,there2diferetfunctionsuch21f(x)dx=2,but41f(x)xdxgivesdiferentvaluesalsogiveng:[1,4]Rintegableonthatdomain,youcanalwaysbuildasolutiontoitwithf(x)=2g(x)21g(x)dx;21g(x)dx0
Commented by prakash jain last updated on 12/Mar/19
If we modify the question∫_1 ^4 ((f((√)x))/( (√x)))dx  x=u^2   dx=2udu  ∫_1 ^4 ((f((√)x))/( (√x)))dx=∫_1 ^2 2f(u)du
Ifwemodifythequestion14f(x)xdxx=u2dx=2udu14f(x)xdx=122f(u)du
Answered by MJS last updated on 11/Mar/19
if we don′t know the nature of f(x) we can′t  solve. the number of functions satisfying the  1^(st)  condition is ∞
ifwedontknowthenatureoff(x)wecantsolve.thenumberoffunctionssatisfyingthe1stconditionis
Commented by MJS last updated on 11/Mar/19
even if f(x) is linear it′s not determined:  f(x)=ax+b  ∫_1 ^2 f(x)dx=((3a)/2)+b=(√2) ⇒ b=(√2)−((3a)/2)  f(x)=ax+(√2)−((3a)/2); a∈R  ∫_1 ^4 ((f(x))/( (√x)))dx=((5a)/3)+2(√2); a∈R    if b=0 ⇒ a=((2(√2))/3) ⇒ ∫_1 ^4 ((f(x))/( (√x)))dx=((28(√2))/9)  if a=0 ⇒ b=(√2) ⇒ ∫_1 ^4 ((f(x))/( (√x)))dx=2(√2)  ...
eveniff(x)islinearitsnotdetermined:f(x)=ax+b21f(x)dx=3a2+b=2b=23a2f(x)=ax+23a2;aR41f(x)xdx=5a3+22;aRifb=0a=22341f(x)xdx=2829ifa=0b=241f(x)xdx=22
Commented by afachri last updated on 11/Mar/19
thank you for all of You Sir.  that was i thinking before. how  to or is that any possible to do to  find the real f(x)
thankyouforallofYouSir.thatwasithinkingbefore.howtooristhatanypossibletodotofindtherealf(x)

Leave a Reply

Your email address will not be published. Required fields are marked *