Menu Close

If-1-a-1-2a-1-3a-1-b-2-2b-a-and-b-are-positive-integers-Find-minimum-value-of-a-b-




Question Number 21236 by Joel577 last updated on 17/Sep/17
If (1/a) + (1/(2a)) + (1/(3a)) = (1/(b^2  − 2b))  a and b are positive integers  Find minimum value of a + b
If1a+12a+13a=1b22baandbarepositiveintegersFindminimumvalueofa+b
Answered by mrW1 last updated on 17/Sep/17
(1/a)(1+(1/2)+(1/3))=(1/(b(b−2)))  ((11)/(6a))=(1/(b(b−2)))  a=((11b(b−2))/6)=11k  b(b−2)=6k  b^2 −2b−6k=0  b=((2+(√(4+4×6k)))/2)=1+(√(1+6k))  ⇒ k=2i(3i±1) with i=1,2,3......  ⇒b=6i+1±1  ⇒a=22i(3i±1)    k=4, 8, 20, 28, 48,60...  b=6, 8, 12, 14, 18, 20...  a=44, 88, 132, 154, 198, 220...    k_(min) =4  b_(min) =1+5=6  a_(min) =11×4=44  ⇒(a+b)_(min) =50
1a(1+12+13)=1b(b2)116a=1b(b2)a=11b(b2)6=11kb(b2)=6kb22b6k=0b=2+4+4×6k2=1+1+6kk=2i(3i±1)withi=1,2,3b=6i+1±1a=22i(3i±1)k=4,8,20,28,48,60b=6,8,12,14,18,20a=44,88,132,154,198,220kmin=4bmin=1+5=6amin=11×4=44(a+b)min=50
Commented by $@ty@m last updated on 17/Sep/17
Will you pl. explain blue part?
Willyoupl.explainbluepart?
Commented by mrW1 last updated on 17/Sep/17
b=1+(√(1+6k))  1+6k=j^2   k=((j^2 −1)/6)=(((j−1)(j+1))/(2×3))  j must be odd, i.e. j=2m+1  ⇒k=((2m(2m+2))/(2×3))=((2m(m+1))/3)  m must be 3i or 3i−1  ⇒k=2i(3i+1) or 2i(3i−1)  ⇒k=2i(3i±1)  b=1+(√(1+6k))=1+(√(1+6×2i(3i±1)))  =1+(√((6i±1)^2 ))  =1+6i±1  a=11k=22i(3i±1)
b=1+1+6k1+6k=j2k=j216=(j1)(j+1)2×3jmustbeodd,i.e.j=2m+1k=2m(2m+2)2×3=2m(m+1)3mmustbe3ior3i1k=2i(3i+1)or2i(3i1)k=2i(3i±1)b=1+1+6k=1+1+6×2i(3i±1)=1+(6i±1)2=1+6i±1a=11k=22i(3i±1)
Commented by Joel577 last updated on 18/Sep/17
understood. thank you very much
understood.thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *