Menu Close

If-1-a-1-a-2-a-n-1-are-n-th-roots-of-unity-the-find-the-value-of-1-1-1-1-1-a-1-1-1-a-2-1-1-a-n-1-n-is-odd-number-




Question Number 52087 by prakash jain last updated on 03/Jan/19
If 1,a_1 ,a_2 ,...,a_(n−1)  are n^(th)  roots of  unity the find the value of  (1/(1+1))+(1/(1+a_1 ))+(1/(1+a_2 ))+..+(1/(1+a_(n−1) ))  n is odd number
If1,a1,a2,,an1arenthrootsofunitythefindthevalueof11+1+11+a1+11+a2+..+11+an1nisoddnumber
Commented by maxmathsup by imad last updated on 03/Jan/19
let S_n =Σ_(k=0) ^(n−1)   (1/(1+a_k ))  with a_k =e^((i2kπ)/n)   we have 1+a_k =1+cos(((2kπ)/n))+isin(((2kπ)/n))  =2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)) =2cos(((kπ)/n))e^(i((kπ)/n))  ⇒(1/(1+a_k )) =(1/(2cos(((kπ)/n)))) e^(−((ikπ)/n))   =(1/(2cos(((kπ)/n)))){cos(((kπ)/n))−isin(((kπ)/n))}=(1/2) −(i/2)tan(((kπ)/n))⇒  S_n =(n/2) −(i/2) Σ_(k=0) ^(n−1)  tan(((kπ)/n)) rest to find Σ_(k=0) ^(n−1)  tan(((kπ)/n))...
letSn=k=0n111+akwithak=ei2kπnwehave1+ak=1+cos(2kπn)+isin(2kπn)=2cos2(kπn)+2isin(kπn)cos(kπn)=2cos(kπn)eikπn11+ak=12cos(kπn)eikπn=12cos(kπn){cos(kπn)isin(kπn)}=12i2tan(kπn)Sn=n2i2k=0n1tan(kπn)resttofindk=0n1tan(kπn)
Answered by mr W last updated on 03/Jan/19
z^n =1  z=cos θ+i sin θ  z^n =cos nθ+i sin nθ=1  ⇒nθ=2kπ, k=0,1,2,...,n−1  ⇒θ=((2kπ)/n)  ⇒a_k =cos ((2kπ)/n)+i sin ((2kπ)/n)  (1/(1+a_k ))=(1/(1+cos ((2kπ)/n)+i sin ((2kπ)/n)))  =((1+cos ((2kπ)/n)−i sin ((2kπ)/n))/((1+cos ((2kπ)/n))^2 +(sin ((2kπ)/n))^2 ))  =((1+cos ((2kπ)/n)−i sin ((2kπ)/n))/(2(1+cos ((2kπ)/n))))  =(1/2)[1−i((sin ((2kπ)/n))/(1+cos ((2kπ)/n)))]  =(1/2)[1−i((sin ((2kπ)/n))/(2cos^2  ((kπ)/n)))]  =(1/2)[1−i((2sin ((kπ)/n) cos ((kπ)/n))/(2cos^2  ((kπ)/n)))]  =(1/2)[1−itan ((kπ)/n)]  Σ_(k=0) ^(n−1) (1/(1+a_k ))=(1/2)[n−iΣ_(k=0) ^(n−1) tan ((kπ)/n)]  tan (((n−1)π)/n)=tan (π−(π/n))=−tan (π/n)  tan (((n−2)π)/n)=tan (π−((2π)/n))=−tan ((2π)/n)  ...  ⇒Σ_(k=0) ^(n−1) tan ((kπ)/n)=0    (since n=odd)  ⇒Σ_(k=0) ^(n−1) (1/(1+a_k ))=(n/2)
zn=1z=cosθ+isinθzn=cosnθ+isinnθ=1nθ=2kπ,k=0,1,2,,n1θ=2kπnak=cos2kπn+isin2kπn11+ak=11+cos2kπn+isin2kπn=1+cos2kπnisin2kπn(1+cos2kπn)2+(sin2kπn)2=1+cos2kπnisin2kπn2(1+cos2kπn)=12[1isin2kπn1+cos2kπn]=12[1isin2kπn2cos2kπn]=12[1i2sinkπncoskπn2cos2kπn]=12[1itankπn]n1k=011+ak=12[nin1k=0tankπn]tan(n1)πn=tan(ππn)=tanπntan(n2)πn=tan(π2πn)=tan2πnn1k=0tankπn=0(sincen=odd)n1k=011+ak=n2
Commented by prakash jain last updated on 03/Jan/19
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *