Menu Close

If-1-a-1-a-2-a-n-1-are-n-th-roots-of-unity-then-prove-that-1-a-1-1-a-2-1-a-n-1-n-if-n-is-even-0-if-n-is-odd-




Question Number 52086 by prakash jain last updated on 03/Jan/19
If 1,a_(1,) a_2 ,...,a_(n−1)  are n^(th)  roots of  unity, then prove that.  (1+a_1 )(1+a_2 )..(1+a_(n−1) )=  n  if n is even  0 if n is odd
If1,a1,a2,,an1arenthrootsofunity,thenprovethat.(1+a1)(1+a2)..(1+an1)=nifniseven0ifnisodd
Commented by mr W last updated on 03/Jan/19
should it be   =n if n is odd  =0 if n is even?
shoulditbe=nifnisodd=0ifniseven?
Commented by mr W last updated on 03/Jan/19
please check the question sir:  n=3:  a_1 =ω=−(1/2)+((√3)/2)i  a_2 =ω^2 =−(1/2)−((√3)/2)  (1+a_1 )(1+a_2 )=((1/2)−((√3)/2)i)((1/2)+((√3)/2)i)  =(1/4)+(3/4)  =1≠n=3
pleasecheckthequestionsir:n=3:a1=ω=12+32ia2=ω2=1232(1+a1)(1+a2)=(1232i)(12+32i)=14+34=1n=3
Commented by prakash jain last updated on 03/Jan/19
You are correct. The question should 1 for n odd. And 0 for n even
Answered by mr W last updated on 04/Jan/19
see question above  a_k =cos ((2kπ)/n)+i sin ((2kπ)/n), k=0,1,2,...,n−1  1+a_k =1+cos ((2kπ)/n)+i sin ((2kπ)/n)  1+a_k =2cos^2  ((kπ)/n)+i 2sin ((kπ)/n)cos ((kπ)/n)  1+a_k =2cos ((kπ)/n)(cos ((kπ)/n)+i sin ((kπ)/n))  P=Π_(k=1) ^(n−1) (1+a_k )=2^(n−1) Π_(k=1) ^(n−1) cos ((kπ)/n) Π_(k=1) ^(n−1) (cos ((kπ)/n)+i sin ((kπ)/n))    if n=even:  at k=(n/2):  cos ((kπ)/n)=cos (π/2)=0  ⇒P=0    if n=odd:  cos (((n−1)π)/n)=cos (π−(π/n))=−cos (π/n)  sin (((n−1)π)/n)=sin (π−(π/n))=sin (π/n)  [cos (((n−1)π)/n)+i sin (((n−1)π)/n)][cos (π/n)+i sin (π/n)]  =[−cos (π/n)+i sin (π/n)][cos (π/n)+i sin (π/n)]  =−[cos (π/n)−i sin (π/n)][cos (π/n)+i sin (π/n)]  =−[cos^2  (π/n)+sin^2  (π/n)]  =−1  ⇒Π_(k=1) ^(n−1) (cos ((kπ)/n)+i sin ((kπ)/n))=(−1)^((n−1)/2) =1    cos (π/n) cos (((n−1)π)/n)=−cos^2  (π/n)  cos ((2π)/n) cos (((n−2)π)/n)=−cos^2  ((2π)/n)  P=2^(n−1)  cos^2  (π/n) cos^2  ((2π)/n) cos^2  ((3π)/n) ... cos^2  (((n−1)π)/(2n))  P=2^(n−1) [cos (π/n) cos ((2π)/n) cos ((3π)/n) ... cos (((n−1)π)/(2n))]^2   ......????
seequestionaboveak=cos2kπn+isin2kπn,k=0,1,2,,n11+ak=1+cos2kπn+isin2kπn1+ak=2cos2kπn+i2sinkπncoskπn1+ak=2coskπn(coskπn+isinkπn)P=n1k=1(1+ak)=2n1n1k=1coskπnn1k=1(coskπn+isinkπn)ifn=even:atk=n2:coskπn=cosπ2=0P=0ifn=odd:cos(n1)πn=cos(ππn)=cosπnsin(n1)πn=sin(ππn)=sinπn[cos(n1)πn+isin(n1)πn][cosπn+isinπn]=[cosπn+isinπn][cosπn+isinπn]=[cosπnisinπn][cosπn+isinπn]=[cos2πn+sin2πn]=1n1k=1(coskπn+isinkπn)=(1)n12=1cosπncos(n1)πn=cos2πncos2πncos(n2)πn=cos22πnP=2n1cos2πncos22πncos23πncos2(n1)π2nP=2n1[cosπncos2πncos3πncos(n1)π2n]2????
Commented by prakash jain last updated on 03/Jan/19
I was able to prove for odd.  (1+x)(1+x^2 )...(1+x^(n−1) )  =Σ_(k=0) ^((n(n+1))/2) x^k =((x^(1+((n(n+1))/2)) −1)/(x−1))  x is first root of unity.  ((x.(x^n )^((n+1)/2) −1)/(x−1))=((x−1)/(x−1))=1
Iwasabletoproveforodd.(1+x)(1+x2)(1+xn1)=n(n+1)2k=0xk=x1+n(n+1)21x1xisfirstrootofunity.x.(xn)(n+1)/21x1=x1x1=1
Commented by mr W last updated on 03/Jan/19
thanks sir!  i have to study in detail. i can′t get this result yet.
thankssir!ihavetostudyindetail.icantgetthisresultyet.
Commented by mr W last updated on 04/Jan/19
I studied your workings and unterstand  now.  should the third line not be  =Σ_(k=0) ^((n(n−1))/2) x^k =((x^(1+((n(n−1))/2)) −1)/(x−1)) ?  why must n be odd? i can′t see this  restriction in your workings.
Istudiedyourworkingsandunterstandnow.shouldthethirdlinenotbe=n(n1)2k=0xk=x1+n(n1)21x1?whymustnbeodd?icantseethisrestrictioninyourworkings.

Leave a Reply

Your email address will not be published. Required fields are marked *