Menu Close

If-1-a-1-b-1-c-1-a-b-c-then-prove-that-1-a-3-1-b-3-1-c-3-1-a-b-c-3-




Question Number 173157 by AgniMath last updated on 07/Jul/22
If (1/a) + (1/b) + (1/c) = (1/(a + b + c)) then prove that  (1/a^3 ) + (1/b^3 ) + (1/c^3 ) = (1/((a + b + c)^3 )) .
If1a+1b+1c=1a+b+cthenprovethat1a3+1b3+1c3=1(a+b+c)3.
Answered by Cesar1994 last updated on 07/Jul/22
  (1/a)+(1/b)+(1/c)=(1/(a+b+c))  ((1/a)+(1/b)+(1/c))^3 =((1/(a+b+c)))^3   (1/a^3 )+(1/b^3 )+(1/c^3 )+3((1/a)+(1/b))((1/a)+(1/c))((1/b)+(1/c))=(1/((a+b+c)^3 ))  ∙∙∙ (1)  demostraremos que ((1/a)+(1/b))((1/a)+(1/c))((1/b)+(1/c))=0  Sea x=(1/(a+b+c)) ∙∙∙(2)  ⇒((1/a)+(1/b))((1/a)+(1/c))((1/b)+(1/c))=(x−(1/c))(x−(1/b))(x−(1/a))                                                                 =x^3 −((1/a)+(1/b)+(1/c)_(x) )x^2 +((1/(ab))+(1/(bc))+(1/(ca)))x− (1/(abc))                                                                 =x^3 −x^3 +(((a+b+c)/(abc)))x−(1/(abc)) , (a+b+c)x=1 por (2)                                                                 = (1/(abc))−(1/(abc))                                                                 =0  sustituyendo en (1) se concluye que  (1/a^3 )+(1/b^3 )+(1/c^3 ) = (1/((a+b+c)^3 ))
1a+1b+1c=1a+b+c(1a+1b+1c)3=(1a+b+c)31a3+1b3+1c3+3(1a+1b)(1a+1c)(1b+1c)=1(a+b+c)3(1)demostraremosque(1a+1b)(1a+1c)(1b+1c)=0Seax=1a+b+c(2)(1a+1b)(1a+1c)(1b+1c)=(x1c)(x1b)(x1a)=x3(1a+1b+1cx)x2+(1ab+1bc+1ca)x1abc=x3x3+(a+b+cabc)x1abc,(a+b+c)x=1por(2)=1abc1abc=0sustituyendoen(1)seconcluyeque1a3+1b3+1c3=1(a+b+c)3
Commented by Tawa11 last updated on 11/Jul/22
Great sirs
Greatsirs

Leave a Reply

Your email address will not be published. Required fields are marked *