Menu Close

If-1-a-2-a-3-a-n-1-are-the-roots-nth-of-unity-prove-that-1-a-1-a-2-1-a-3-1-a-n-1-n-2-n-2-




Question Number 113336 by 175mohamed last updated on 12/Sep/20
If 1, a^2 ,a^3  ,...,a^(n−1)  are the roots   nth of unity ,   prove that : (1+a)(1+a^2 )(1+a^3 )...(1+a^(n−1) )  = n−2⌊(n/2)⌋
$${If}\:\mathrm{1},\:{a}^{\mathrm{2}} ,{a}^{\mathrm{3}} \:,…,{a}^{{n}−\mathrm{1}} \:{are}\:{the}\:{roots}\: \\ $$$${nth}\:{of}\:{unity}\:,\: \\ $$$${prove}\:{that}\::\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{3}} \right)…\left(\mathrm{1}+{a}^{{n}−\mathrm{1}} \right) \\ $$$$=\:{n}−\mathrm{2}\lfloor\frac{{n}}{\mathrm{2}}\rfloor \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *