Menu Close

If-1-and-2-are-respectively-the-wavelengths-of-the-series-limit-of-Lyman-and-Balmer-series-of-Hydrogen-atom-then-the-wavelength-of-the-first-line-of-the-Lyman-series-of-the-H-atom-is-1-1-




Question Number 15906 by Tinkutara last updated on 15/Jun/17
If λ_1  and λ_2  are respectively the  wavelengths of the series limit of Lyman  and Balmer series of Hydrogen atom,  then the wavelength of the first line of  the Lyman series of the H-atom is  (1) λ_1  − λ_2   (2) (√(λ_1 λ_2 ))  (3) ((λ_2  − λ_1 )/(λ_1 λ_2 ))  (4) ((λ_1 λ_2 )/(λ_2  − λ_1 ))
$$\mathrm{If}\:\lambda_{\mathrm{1}} \:\mathrm{and}\:\lambda_{\mathrm{2}} \:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the} \\ $$$$\mathrm{wavelengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{Lyman} \\ $$$$\mathrm{and}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{of}\:\mathrm{Hydrogen}\:\mathrm{atom}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{wavelength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{line}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Lyman}\:\mathrm{series}\:\mathrm{of}\:\mathrm{the}\:\mathrm{H}-\mathrm{atom}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\lambda_{\mathrm{1}} \:−\:\lambda_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\sqrt{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\frac{\lambda_{\mathrm{2}} \:−\:\lambda_{\mathrm{1}} }{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} }{\lambda_{\mathrm{2}} \:−\:\lambda_{\mathrm{1}} } \\ $$
Answered by ajfour last updated on 15/Jun/17
 (1/λ_1 )=R ,  (1/λ_2 )=R/4   ,  (1/λ_(L1) )= ((3R)/4)    As  ((3R)/4) = R−(R/4)              (1/λ_(L1) )= (1/λ_1 )−(1/λ_2 )  ⇒     λ_(L1) = ((λ_1 λ_2 )/(λ_2 −λ_1 )) .   option (4).
$$\:\frac{\mathrm{1}}{\lambda_{\mathrm{1}} }={R}\:,\:\:\frac{\mathrm{1}}{\lambda_{\mathrm{2}} }={R}/\mathrm{4}\:\:\:,\:\:\frac{\mathrm{1}}{\lambda_{{L}\mathrm{1}} }=\:\frac{\mathrm{3}{R}}{\mathrm{4}} \\ $$$$\:\:{As}\:\:\frac{\mathrm{3}{R}}{\mathrm{4}}\:=\:{R}−\frac{{R}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\lambda_{{L}\mathrm{1}} }=\:\frac{\mathrm{1}}{\lambda_{\mathrm{1}} }−\frac{\mathrm{1}}{\lambda_{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\:\:\lambda_{{L}\mathrm{1}} =\:\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} }{\lambda_{\mathrm{2}} −\lambda_{\mathrm{1}} }\:.\:\:\:{option}\:\left(\mathrm{4}\right). \\ $$
Commented by Tinkutara last updated on 15/Jun/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *