Menu Close

If-1-ax-bx-2-1-2x-18-can-be-expanded-using-binomial-theorem-in-ascending-power-of-x-Determine-the-value-of-a-and-b-if-the-coefficient-of-x-3-and-x-4-are-both-zero-




Question Number 40523 by scientist last updated on 23/Jul/18
If (1+ax+bx^2 )(1−2x)^(18)   can be expanded using  binomial theorem in ascending power of x.Determine  the value of   a and b,if the coefficient of x^3   and x^(4 )   are both zero.
If(1+ax+bx2)(12x)18canbeexpandedusingbinomialtheoreminascendingpowerofx.Determinethevalueofaandb,ifthecoefficientofx3andx4arebothzero.
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
(1+ax+bx^2 )(1−18C_1 .2x+18C_2 .4x^2 −18C_3 .8x^3    +18C_4 .16x^4 +...)  the term containing x^4     x^4 (18C_4 .16−a.18C_3 .8+b.18C_2 .4)  the term containing x^3   x^3 (−18C_3 .8+a.18C_2 .4−b.18C_1 .2)  if coefficient of x^3  and x^4  are zero then  a.18C_2 .4−b.18C_1 .2=18C_3 .16  ist eqn  a.18C_3 .8−b.18C_2 .4=18C_4 .16 2nd eqn  to solve ...  18C_1 =18   18C_2 =((18×17)/2)=153  18C_3 =((18×17×16)/(3×2))=((153×16)/3)=816  18C_4 =((18×17×16×15)/(4×3×2))=((816×15)/4)=3060  ist eqn  612a−36b=816×16  816×8a−153×4b=3060×16  its a big big number so solve pls...
(1+ax+bx2)(118C1.2x+18C2.4x218C3.8x3+18C4.16x4+)thetermcontainingx4x4(18C4.16a.18C3.8+b.18C2.4)thetermcontainingx3x3(18C3.8+a.18C2.4b.18C1.2)ifcoefficientofx3andx4arezerothena.18C2.4b.18C1.2=18C3.16isteqna.18C3.8b.18C2.4=18C4.162ndeqntosolve18C1=1818C2=18×172=15318C3=18×17×163×2=153×163=81618C4=18×17×16×154×3×2=816×154=3060isteqn612a36b=816×16816×8a153×4b=3060×16itsabigbignumbersosolvepls
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
(1−18C_1 .2x+18C_2 .(2x)^2 −18C_3 .(2x)^3 +....)  terms containing  x^3    =−18C_3 (2x)^3 +ax.18C_2 .(2x)^2 +bx^2 .(−18C_1 (2x)  =x^3 {−18C_3 .8+a.4.18C_2 +b.−18C_3 .2 }  pls post complete question...
(118C1.2x+18C2.(2x)218C3.(2x)3+.)termscontainingx3=18C3(2x)3+ax.18C2.(2x)2+bx2.(18C1(2x)=x3{18C3.8+a.4.18C2+b.18C3.2}plspostcompletequestion
Commented by MJS last updated on 23/Jul/18
also the constant factor of x^4  is zero, so just  continue!
alsotheconstantfactorofx4iszero,sojustcontinue!
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
ok sir...
oksir

Leave a Reply

Your email address will not be published. Required fields are marked *