Menu Close

If-1-ax-bx-2-1-2x-18-can-be-expanded-using-binomial-theorem-in-ascending-power-of-x-Determine-the-value-of-a-and-b-if-the-coefficient-of-x-3-and-x-4-are-both-zero-




Question Number 40523 by scientist last updated on 23/Jul/18
If (1+ax+bx^2 )(1−2x)^(18)   can be expanded using  binomial theorem in ascending power of x.Determine  the value of   a and b,if the coefficient of x^3   and x^(4 )   are both zero.
$${If}\:\left(\mathrm{1}+{ax}+{bx}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{18}} \:\:{can}\:{be}\:{expanded}\:{using} \\ $$$${binomial}\:{theorem}\:{in}\:{ascending}\:{power}\:{of}\:{x}.{Determine} \\ $$$${the}\:{value}\:{of}\:\:\:{a}\:{and}\:{b},{if}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} \:\:{and}\:{x}^{\mathrm{4}\:} \:\:{are}\:{both}\:{zero}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
(1+ax+bx^2 )(1−18C_1 .2x+18C_2 .4x^2 −18C_3 .8x^3    +18C_4 .16x^4 +...)  the term containing x^4     x^4 (18C_4 .16−a.18C_3 .8+b.18C_2 .4)  the term containing x^3   x^3 (−18C_3 .8+a.18C_2 .4−b.18C_1 .2)  if coefficient of x^3  and x^4  are zero then  a.18C_2 .4−b.18C_1 .2=18C_3 .16  ist eqn  a.18C_3 .8−b.18C_2 .4=18C_4 .16 2nd eqn  to solve ...  18C_1 =18   18C_2 =((18×17)/2)=153  18C_3 =((18×17×16)/(3×2))=((153×16)/3)=816  18C_4 =((18×17×16×15)/(4×3×2))=((816×15)/4)=3060  ist eqn  612a−36b=816×16  816×8a−153×4b=3060×16  its a big big number so solve pls...
$$\left(\mathrm{1}+{ax}+{bx}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}{x}+\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}{x}^{\mathrm{2}} −\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}{x}^{\mathrm{3}} \right. \\ $$$$\left.\:+\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}{x}^{\mathrm{4}} +…\right) \\ $$$${the}\:{term}\:{containing}\:{x}^{\mathrm{4}} \:\: \\ $$$${x}^{\mathrm{4}} \left(\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}−{a}.\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{b}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}\right) \\ $$$${the}\:{term}\:{containing}\:{x}^{\mathrm{3}} \\ $$$${x}^{\mathrm{3}} \left(−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{a}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}−{b}.\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}\right) \\ $$$${if}\:{coefficient}\:{of}\:{x}^{\mathrm{3}} \:{and}\:{x}^{\mathrm{4}} \:{are}\:{zero}\:{then} \\ $$$${a}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}−{b}.\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}=\mathrm{18}{C}_{\mathrm{3}} .\mathrm{16}\:\:{ist}\:{eqn} \\ $$$${a}.\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}−{b}.\mathrm{18}{C}_{\mathrm{2}} .\mathrm{4}=\mathrm{18}{C}_{\mathrm{4}} .\mathrm{16}\:\mathrm{2}{nd}\:{eqn} \\ $$$${to}\:{solve}\:… \\ $$$$\mathrm{18}{C}_{\mathrm{1}} =\mathrm{18}\:\:\:\mathrm{18}{C}_{\mathrm{2}} =\frac{\mathrm{18}×\mathrm{17}}{\mathrm{2}}=\mathrm{153} \\ $$$$\mathrm{18}{C}_{\mathrm{3}} =\frac{\mathrm{18}×\mathrm{17}×\mathrm{16}}{\mathrm{3}×\mathrm{2}}=\frac{\mathrm{153}×\mathrm{16}}{\mathrm{3}}=\mathrm{816} \\ $$$$\mathrm{18}{C}_{\mathrm{4}} =\frac{\mathrm{18}×\mathrm{17}×\mathrm{16}×\mathrm{15}}{\mathrm{4}×\mathrm{3}×\mathrm{2}}=\frac{\mathrm{816}×\mathrm{15}}{\mathrm{4}}=\mathrm{3060} \\ $$$${ist}\:{eqn} \\ $$$$\mathrm{612}{a}−\mathrm{36}{b}=\mathrm{816}×\mathrm{16} \\ $$$$\mathrm{816}×\mathrm{8}{a}−\mathrm{153}×\mathrm{4}{b}=\mathrm{3060}×\mathrm{16} \\ $$$${its}\:{a}\:{big}\:{big}\:{number}\:{so}\:{solve}\:{pls}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
(1−18C_1 .2x+18C_2 .(2x)^2 −18C_3 .(2x)^3 +....)  terms containing  x^3    =−18C_3 (2x)^3 +ax.18C_2 .(2x)^2 +bx^2 .(−18C_1 (2x)  =x^3 {−18C_3 .8+a.4.18C_2 +b.−18C_3 .2 }  pls post complete question...
$$\left(\mathrm{1}−\mathrm{18}{C}_{\mathrm{1}} .\mathrm{2}{x}+\mathrm{18}{C}_{\mathrm{2}} .\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{18}{C}_{\mathrm{3}} .\left(\mathrm{2}{x}\right)^{\mathrm{3}} +….\right) \\ $$$${terms}\:{containing}\:\:{x}^{\mathrm{3}} \\ $$$$\:=−\mathrm{18}{C}_{\mathrm{3}} \left(\mathrm{2}{x}\right)^{\mathrm{3}} +{ax}.\mathrm{18}{C}_{\mathrm{2}} .\left(\mathrm{2}{x}\right)^{\mathrm{2}} +{bx}^{\mathrm{2}} .\left(−\mathrm{18}{C}_{\mathrm{1}} \left(\mathrm{2}{x}\right)\right. \\ $$$$={x}^{\mathrm{3}} \left\{−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{8}+{a}.\mathrm{4}.\mathrm{18}{C}_{\mathrm{2}} +{b}.−\mathrm{18}{C}_{\mathrm{3}} .\mathrm{2}\:\right\} \\ $$$${pls}\:{post}\:{complete}\:{question}… \\ $$
Commented by MJS last updated on 23/Jul/18
also the constant factor of x^4  is zero, so just  continue!
$$\mathrm{also}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factor}\:\mathrm{of}\:{x}^{\mathrm{4}} \:\mathrm{is}\:\mathrm{zero},\:\mathrm{so}\:\mathrm{just} \\ $$$$\mathrm{continue}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Jul/18
ok sir...
$${ok}\:{sir}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *