Menu Close

If-1-cos-x-1-sin-x-3-2-then-1-cos-x-1-sin-x-nice-trigonometry-




Question Number 127169 by bramlexs22 last updated on 27/Dec/20
If (1+cos x)(1+sin x) = (3/2)   then (1−cos x)(1−sin x) =?    nice trigonometry
If(1+cosx)(1+sinx)=32then(1cosx)(1sinx)=?nicetrigonometry
Commented by Dwaipayan Shikari last updated on 27/Dec/20
(1−cosx)(1−sinx)(1+cosx)(1+sinx)=(3/2)(1−cosx)(1−sinx)  ⇒sin^2 x cos^2 x=(3/2)(1−cosx)(1−sinx)=(3/2)a  1+cosx+sinx+sinxcosx=(3/2)→(a)  1−cosx−sinx+sinxcosx=a→(b)     (a+b)→   2sinxcosx=a−(1/2)  (3/2)a=(1/4)(a−(1/2))^2 ⇒a^2 +(1/4)−a=6a⇒a^2 −7a+(1/4)⇒a=(7/2)±2(√3)  Here a=(7/2)−2(√3)
(1cosx)(1sinx)(1+cosx)(1+sinx)=32(1cosx)(1sinx)sin2xcos2x=32(1cosx)(1sinx)=32a1+cosx+sinx+sinxcosx=32(a)1cosxsinx+sinxcosx=a(b)(a+b)2sinxcosx=a1232a=14(a12)2a2+14a=6aa27a+14a=72±23Herea=7223
Commented by bramlexs22 last updated on 27/Dec/20
Commented by liberty last updated on 27/Dec/20
(1+sin x)(1+cos x)=(3/2)  (sin (x/2)+cos (x/2))^2 (2cos^2 (x/2))=(3/2)  (sin (x/2)+cos (x/2)).cos (x/2) =± ((√3)/2)  sin (x/2).cos (x/2)+cos^2 (x/2) =±((√3)/2)  ((sin x)/2)+((1+cos x)/2)= ±((√3)/2)  ⇒sin x+cos x = (√3)−1 ; other value is  outside the range .  note: range of (sin x+cos x)= [−(√2) ,(√2) ]   and−1−(√3) <−(√2)   ∴ (sin x+cos x)^2 =((√3)−1)^2       1+2sin xcos x = 4−2(√3)  then f(x)=(1−sin x)(1−cos x)                      = 1−(sin x+cos x)+sin xcos x                      = 1−((√3)−1)+((3−2(√3))/2)                      = ((7−4(√3))/2) ≈ 0.035898
(1+sinx)(1+cosx)=32(sinx2+cosx2)2(2cos2x2)=32(sinx2+cosx2).cosx2=±32sinx2.cosx2+cos2x2=±32sinx2+1+cosx2=±32sinx+cosx=31;othervalueisoutsidetherange.note:rangeof(sinx+cosx)=[2,2]and13<2(sinx+cosx)2=(31)21+2sinxcosx=423thenf(x)=(1sinx)(1cosx)=1(sinx+cosx)+sinxcosx=1(31)+3232=74320.035898

Leave a Reply

Your email address will not be published. Required fields are marked *