Menu Close

if-1-cosx-a-0-2-n-1-a-n-cos-nx-calculate-a-0-and-a-n-




Question Number 38204 by prof Abdo imad last updated on 22/Jun/18
if  (1/(cosx)) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  calculate a_0  and a_n
if1cosx=a02+n=1ancos(nx)calculatea0andan
Commented by math khazana by abdo last updated on 26/Jun/18
let?developp at fourier?serie tbe?function  f(x)=(1/(cosx))  (2π periodic even)  f(x)=(a_0 /2) +Σ_(n=1) ^∞ a_n  cos(nx)  a_n =(2/T) ∫_([T]) f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π  ((cos(nx))/(cosx))dx ⇒  π a_n = ∫_(−π) ^π   ((cos(nx))/(cosx))dx=Re( ∫_(−π) ^π  (e^(inx) /(cosx))dx)  changement e^(ix) =z give  ∫_(−π) ^π   (e^(inx) /(cosx))dx =∫_(∣z∣=1)    2(z^n /(z+z^(−1) )) (dz/(iz))  = ∫_(∣z∣=1)  ((−2iz^n )/(z^2  +1))dz let ϕ(z)=  ((−2iz^n )/(z^2  +1)) the poles of  ϕ are i and −i ,residus theorem?give  ∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,i)  =2iπ  ((−2i.i^n )/(2i)) =−2iπi^n  =−2π i^(n+1)  ⇒  π a_(2n)  =Re( −2π i^(2n+1) )=Re( −2πi(−1)^n )=0  π a_(2n+1) =Re(−2πi^(2n+2) )=Re( 2π(−1)^n )  =2π(−1)^n  ⇒ a_(2n+1) = 2(−1)^n  ⇒a_0 =0 and  (1/(cosx)) = 2Σ_(n=0) ^∞  (−1)^n  cos(2n+1)x
let?developpatfourier?serietbe?functionf(x)=1cosx(2πperiodiceven)f(x)=a02+n=1ancos(nx)an=2T[T]f(x)cos(nx)dx=22πππcos(nx)cosxdxπan=ππcos(nx)cosxdx=Re(ππeinxcosxdx)changementeix=zgiveππeinxcosxdx=z∣=12znz+z1dziz=z∣=12iznz2+1dzletφ(z)=2iznz2+1thepolesofφareiandi,residustheorem?givez∣=1φ(z)dz=2iπRes(φ,i)=2iπ2i.in2i=2iπin=2πin+1πa2n=Re(2πi2n+1)=Re(2πi(1)n)=0πa2n+1=Re(2πi2n+2)=Re(2π(1)n)=2π(1)na2n+1=2(1)na0=0and1cosx=2n=0(1)ncos(2n+1)x

Leave a Reply

Your email address will not be published. Required fields are marked *