Menu Close

If-1-i-3-1-i-3-n-is-an-integer-then-n-is-




Question Number 19434 by Tinkutara last updated on 11/Aug/17
If (((1 + i(√3))/(1 − i(√3))))^n  is an integer, then n is
$$\mathrm{If}\:\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}\right)^{{n}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{integer},\:\mathrm{then}\:{n}\:\mathrm{is} \\ $$
Answered by ajfour last updated on 11/Aug/17
(((1+i(√3))/(1−i(√3))))^n =((e^(iπ/6) /e^(−iπ/6) ))^n =[x]  ⇒ e^(inπ/3) =±1 =e^(ikπ)   ⇒  n=3k where k∈Z .
$$\left(\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{1}−{i}\sqrt{\mathrm{3}}}\right)^{\mathrm{n}} =\left(\frac{\mathrm{e}^{{i}\pi/\mathrm{6}} }{\mathrm{e}^{−{i}\pi/\mathrm{6}} }\right)^{\mathrm{n}} =\left[\mathrm{x}\right] \\ $$$$\Rightarrow\:\mathrm{e}^{\mathrm{in}\pi/\mathrm{3}} =\pm\mathrm{1}\:=\mathrm{e}^{\mathrm{ik}\pi} \\ $$$$\Rightarrow\:\:\boldsymbol{\mathrm{n}}=\mathrm{3}\boldsymbol{\mathrm{k}}\:\mathrm{where}\:\mathrm{k}\in{Z}\:. \\ $$
Commented by Tinkutara last updated on 11/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *