Menu Close

If-1-i-then-what-is-the-value-of-i-




Question Number 14002 by Joel577 last updated on 26/May/17
If (√(−1)) = i, then   what is the value of (√i) ?
If1=i,thenwhatisthevalueofi?
Answered by ajfour last updated on 26/May/17
i=e^(i((π/2)+2nπ))   (√i)=e^(i((π/4)+nπ))       =cos ((π/4)+nπ)+isin ((π/4)+nπ)      if n is even we have  (√i)=(1/( (√2)))+(i/( (√2)))      if n is odd,  (√i)=−((1/( (√2)))+(i/( (√2))))   so  (√i) =±(((1+i)/( (√2))))  .
i=ei(π2+2nπ)i=ei(π4+nπ)=cos(π4+nπ)+isin(π4+nπ)ifnisevenwehavei=12+i2ifnisodd,i=(12+i2)soi=±(1+i2).
Commented by tawa tawa last updated on 26/May/17
God bless you sir.....
Godblessyousir..
Answered by RasheedSindhi last updated on 26/May/17
Let (√i)  =x+iy        (x+iy)^2 =i         x^2 +2xyi−y^2 =0+i         x^2 −y^2 =0 ∧ 2xy=1        (x+y)(x−y)=0  ∧  xy=(1/2)    (  x=−y ∣ x=y  ) ∧  xy=1/2     •If  x=y⇒x^2 =1/2⇒x=±(1/( (√2)))        y=±(1/( (√2)))     •If x=−y⇒−x^2 =1/2⇒x=±(i/( (√2)))         y=∓(i/( (√2)))    •  (√i) =x+iy=±(1/( (√2)))+i(±(1/( (√2))))             =±((1+i)/( (√2)))    •(√i) =x+iy=±(i/( (√2)))+i(∓(i/( (√2))))          =±(i/( (√2)))+(∓(i^2 /( (√2))))=±((1+i)/( (√2)))  Hence in both cases        (√i)=±((1+i)/( (√2)))
Leti=x+iy(x+iy)2=ix2+2xyiy2=0+ix2y2=02xy=1(x+y)(xy)=0xy=12(x=yx=y)xy=1/2Ifx=yx2=1/2x=±12y=±12Ifx=yx2=1/2x=±i2y=i2i=x+iy=±12+i(±12)=±1+i2i=x+iy=±i2+i(i2)=±i2+(i22)=±1+i2Henceinbothcasesi=±1+i2
Commented by chux last updated on 26/May/17
wow...... thanks
wowthanks

Leave a Reply

Your email address will not be published. Required fields are marked *