Question Number 21453 by Joel577 last updated on 24/Sep/17
$$\mathrm{If}\: \\ $$$$\left(\mathrm{1}\:+\:{n}\right)\mathrm{sin}\:\mathrm{2}\theta\:+\:\left(\mathrm{1}\:−\:{n}\right)\mathrm{cos}\:\mathrm{2}\theta\:=\:\mathrm{1}\:+\:{n} \\ $$$$\mathrm{find}\:\mathrm{tan}\:\mathrm{2}\theta \\ $$
Answered by $@ty@m last updated on 24/Sep/17
$$\left(\mathrm{1}−{n}\right)\mathrm{cos}\:\mathrm{2}\theta=\left(\mathrm{1}+{n}\right)\left(\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta\right) \\ $$$$\frac{\mathrm{1}−{n}}{\mathrm{1}+{n}}=\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{cos}\:\mathrm{2}\theta}=\frac{\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\frac{\mathrm{1}−{n}}{\mathrm{1}+{n}}=\frac{\mathrm{cos}\:\theta−\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta} \\ $$$$\frac{−\mathrm{2}{n}}{\mathrm{2}}=\frac{−\mathrm{2sin}\theta\:}{\mathrm{2cos}\:\theta},\:{by}\:{componendo}\:\&\:{dividendo} \\ $$$$\mathrm{tan}\theta={n} \\ $$$$\therefore\:\mathrm{tan2}\theta=\frac{\mathrm{2tan}\:\theta}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \theta}\: \\ $$$$\Rightarrow\:\mathrm{tan2}\theta=\frac{\mathrm{2}{n}}{\mathrm{1}−{n}^{\mathrm{2}} }\:{Ans}. \\ $$$$ \\ $$
Answered by sma3l2996 last updated on 24/Sep/17
$$\left(\mathrm{1}+{n}\right){sin}\mathrm{2}\theta+\left(\mathrm{1}−{n}\right){cos}\mathrm{2}\theta=\mathrm{1}+{n} \\ $$$$\Leftrightarrow\left(\mathrm{1}+{n}\right){tan}\mathrm{2}\theta+\mathrm{1}−{n}=\frac{\mathrm{1}+{n}}{{cos}\mathrm{2}\theta} \\ $$$${we}\:{have}\:\frac{\mathrm{1}}{{cosa}}=\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} {a}} \\ $$$${so}\:\:\left(\mathrm{1}+{n}\right){tan}\mathrm{2}\theta+\mathrm{1}−{n}=\left(\mathrm{1}+{n}\right)\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \mathrm{2}\theta} \\ $$$$\left(\mathrm{1}+{n}\right)^{\mathrm{2}} {tan}^{\mathrm{2}} \mathrm{2}\theta+\left(\mathrm{1}−{n}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}+{n}\right)\left(\mathrm{1}−{n}\right){tan}\mathrm{2}\theta=\left(\mathrm{1}+{n}\right)^{\mathrm{2}} \left(\mathrm{1}+{tan}^{\mathrm{2}} \mathrm{2}\theta\right) \\ $$$$\left(\mathrm{1}−{n}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−{n}^{\mathrm{2}} \right){tan}\mathrm{2}\theta=\left(\mathrm{1}+{n}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{1}−{n}^{\mathrm{2}} \right){tan}\mathrm{2}\theta=\left(\mathrm{1}+{n}\right)^{\mathrm{2}} −\left(\mathrm{1}−{n}\right)^{\mathrm{2}} =\mathrm{4}{n} \\ $$$${tan}\mathrm{2}\theta=\frac{\mathrm{2}{n}}{\mathrm{1}−{n}^{\mathrm{2}} } \\ $$
Answered by $@ty@m last updated on 24/Sep/17
$${Another}\:{solution}: \\ $$$$\left(\mathrm{1}+{n}\right)\frac{\mathrm{2tan}\theta\:}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\:}+\left(\mathrm{1}−{n}\right)\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \theta\:}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\:}=\mathrm{1}+{n} \\ $$$$\mathrm{2}\left(\mathrm{1}+{n}\right){y}+\left(\mathrm{1}−{n}\right)\left(\mathrm{1}−{y}^{\mathrm{2}} \right)=\left(\mathrm{1}+{n}\right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right),\:{where}\:{y}=\mathrm{tan}\theta\: \\ $$$$\mathrm{2}\left(\mathrm{1}+{n}\right){y}+\mathrm{1}−{n}−{y}^{\mathrm{2}} +{ny}^{\mathrm{2}} =\mathrm{1}+{n}+{y}^{\mathrm{2}} +{ny}^{\mathrm{2}} \\ $$$$\mathrm{2}\left(\mathrm{1}+{n}\right){y}=\mathrm{2}\left({n}+{y}^{\mathrm{2}} \right) \\ $$$${y}^{\mathrm{2}} −\left(\mathrm{1}+{n}\right){y}+{n}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{1}+{n}\pm\sqrt{\left(\mathrm{1}+{n}\right)^{\mathrm{2}} −\mathrm{4}{n}}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{1}+{n}\pm\left(\mathrm{1}−{n}\right)}{\mathrm{2}} \\ $$$${y}=\mathrm{1},\:{n} \\ $$$$\mathrm{tan}\:\mathrm{2}\theta=\infty,\:\frac{\mathrm{2}{n}}{\mathrm{1}−{n}^{\mathrm{2}} } \\ $$