Menu Close

If-1-n-sin-2-1-n-cos-2-1-n-find-tan-2-




Question Number 21453 by Joel577 last updated on 24/Sep/17
If   (1 + n)sin 2θ + (1 − n)cos 2θ = 1 + n  find tan 2θ
If(1+n)sin2θ+(1n)cos2θ=1+nfindtan2θ
Answered by $@ty@m last updated on 24/Sep/17
(1−n)cos 2θ=(1+n)(1−sin 2θ)  ((1−n)/(1+n))=((1−sin 2θ)/(cos 2θ))=(((cos θ−sin θ)^2 )/(cos^2 θ−sin^2 θ))  ((1−n)/(1+n))=((cos θ−sin θ)/(cos θ+sin θ))  ((−2n)/2)=((−2sinθ )/(2cos θ)), by componendo & dividendo  tanθ=n  ∴ tan2θ=((2tan θ)/(1−tan^2 θ))   ⇒ tan2θ=((2n)/(1−n^2 )) Ans.
(1n)cos2θ=(1+n)(1sin2θ)1n1+n=1sin2θcos2θ=(cosθsinθ)2cos2θsin2θ1n1+n=cosθsinθcosθ+sinθ2n2=2sinθ2cosθ,bycomponendo&dividendotanθ=ntan2θ=2tanθ1tan2θtan2θ=2n1n2Ans.
Answered by sma3l2996 last updated on 24/Sep/17
(1+n)sin2θ+(1−n)cos2θ=1+n  ⇔(1+n)tan2θ+1−n=((1+n)/(cos2θ))  we have (1/(cosa))=(√(1+tan^2 a))  so  (1+n)tan2θ+1−n=(1+n)(√(1+tan^2 2θ))  (1+n)^2 tan^2 2θ+(1−n)^2 +2(1+n)(1−n)tan2θ=(1+n)^2 (1+tan^2 2θ)  (1−n)^2 +2(1−n^2 )tan2θ=(1+n)^2   2(1−n^2 )tan2θ=(1+n)^2 −(1−n)^2 =4n  tan2θ=((2n)/(1−n^2 ))
(1+n)sin2θ+(1n)cos2θ=1+n(1+n)tan2θ+1n=1+ncos2θwehave1cosa=1+tan2aso(1+n)tan2θ+1n=(1+n)1+tan22θ(1+n)2tan22θ+(1n)2+2(1+n)(1n)tan2θ=(1+n)2(1+tan22θ)(1n)2+2(1n2)tan2θ=(1+n)22(1n2)tan2θ=(1+n)2(1n)2=4ntan2θ=2n1n2
Answered by $@ty@m last updated on 24/Sep/17
Another solution:  (1+n)((2tanθ )/(1+tan^2 θ ))+(1−n)((1−tan^2 θ )/(1+tan^2 θ ))=1+n  2(1+n)y+(1−n)(1−y^2 )=(1+n)(1+y^2 ), where y=tanθ   2(1+n)y+1−n−y^2 +ny^2 =1+n+y^2 +ny^2   2(1+n)y=2(n+y^2 )  y^2 −(1+n)y+n=0  y=((1+n±(√((1+n)^2 −4n)))/2)  y=((1+n±(1−n))/2)  y=1, n  tan 2θ=∞, ((2n)/(1−n^2 ))
Anothersolution:(1+n)2tanθ1+tan2θ+(1n)1tan2θ1+tan2θ=1+n2(1+n)y+(1n)(1y2)=(1+n)(1+y2),wherey=tanθ2(1+n)y+1ny2+ny2=1+n+y2+ny22(1+n)y=2(n+y2)y2(1+n)y+n=0y=1+n±(1+n)24n2y=1+n±(1n)2y=1,ntan2θ=,2n1n2

Leave a Reply

Your email address will not be published. Required fields are marked *