If-1-n-sin-2-1-n-cos-2-1-n-find-tan-2- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 21453 by Joel577 last updated on 24/Sep/17 If(1+n)sin2θ+(1−n)cos2θ=1+nfindtan2θ Answered by $@ty@m last updated on 24/Sep/17 (1−n)cos2θ=(1+n)(1−sin2θ)1−n1+n=1−sin2θcos2θ=(cosθ−sinθ)2cos2θ−sin2θ1−n1+n=cosθ−sinθcosθ+sinθ−2n2=−2sinθ2cosθ,bycomponendo÷ndotanθ=n∴tan2θ=2tanθ1−tan2θ⇒tan2θ=2n1−n2Ans. Answered by sma3l2996 last updated on 24/Sep/17 (1+n)sin2θ+(1−n)cos2θ=1+n⇔(1+n)tan2θ+1−n=1+ncos2θwehave1cosa=1+tan2aso(1+n)tan2θ+1−n=(1+n)1+tan22θ(1+n)2tan22θ+(1−n)2+2(1+n)(1−n)tan2θ=(1+n)2(1+tan22θ)(1−n)2+2(1−n2)tan2θ=(1+n)22(1−n2)tan2θ=(1+n)2−(1−n)2=4ntan2θ=2n1−n2 Answered by $@ty@m last updated on 24/Sep/17 Anothersolution:(1+n)2tanθ1+tan2θ+(1−n)1−tan2θ1+tan2θ=1+n2(1+n)y+(1−n)(1−y2)=(1+n)(1+y2),wherey=tanθ2(1+n)y+1−n−y2+ny2=1+n+y2+ny22(1+n)y=2(n+y2)y2−(1+n)y+n=0y=1+n±(1+n)2−4n2y=1+n±(1−n)2y=1,ntan2θ=∞,2n1−n2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-86987Next Next post: Solve-x-1-4-x-3-x-22-10-x-3-7- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.