Menu Close

If-1-sin-x-cos-x-1-sin-x-cos-x-1-4-then-find-the-value-of-tan-x-1-cos-x-




Question Number 161931 by mnjuly1970 last updated on 24/Dec/21
        If    (( 1−sin(x)−cos(x))/(1+sin(x)−cos(x))) = (1/4)         then  find the value of:             tan(x) + (1/(cos(x))) =?
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f}\:\:\:\:\frac{\:\mathrm{1}−{sin}\left({x}\right)−{cos}\left({x}\right)}{\mathrm{1}+{sin}\left({x}\right)−{cos}\left({x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{then}\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{tan}\left({x}\right)\:+\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=? \\ $$$$\:\:\:\:\:\: \\ $$$$ \\ $$
Commented by cortano last updated on 24/Dec/21
 ((2sin^2 ((x/2))−2sin ((x/2))cos ((x/2)))/(2sin^2 ((x/2))+2sin ((x/2))cos ((x/2)))) =(1/4)   ((sin (x/2)−cos (x/2))/(sin (x/2)+cos (x/2))) =(1/4)   ((1−sin x)/(cos x)) = (1/4)    sec x−tan x=(1/4) . let tan x+sec x =p   { ((sec^2 x−tan^2 x=(p/4))),((tan^2 x+1−tan^2 x=(p/4)⇒p=4)) :}    tan x+sec x = 4
$$\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{2sin}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{2sin}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\:\left(\frac{{x}}{\mathrm{2}}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\frac{\mathrm{sin}\:\frac{{x}}{\mathrm{2}}−\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}{\mathrm{sin}\:\frac{{x}}{\mathrm{2}}+\mathrm{cos}\:\frac{{x}}{\mathrm{2}}}\:=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\frac{\mathrm{1}−\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$$\:\mathrm{sec}\:{x}−\mathrm{tan}\:{x}=\frac{\mathrm{1}}{\mathrm{4}}\:.\:{let}\:\mathrm{tan}\:{x}+\mathrm{sec}\:{x}\:={p} \\ $$$$\begin{cases}{\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{tan}\:^{\mathrm{2}} {x}=\frac{{p}}{\mathrm{4}}}\\{\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}=\frac{{p}}{\mathrm{4}}\Rightarrow{p}=\mathrm{4}}\end{cases} \\ $$$$\:\:\mathrm{tan}\:{x}+\mathrm{sec}\:{x}\:=\:\mathrm{4} \\ $$
Commented by cortano last updated on 24/Dec/21
 another way   (((1−sin x)(1+sin x))/(cos x(1+sin x))) = (1/4)   ((cos x)/(1+sin x)) = (1/4) ⇒((1+sin x)/(cos x))=4  ⇔ (1/(cos x))+tan x=4
$$\:{another}\:{way} \\ $$$$\:\frac{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:{x}\right)}{\mathrm{cos}\:{x}\left(\mathrm{1}+\mathrm{sin}\:{x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}=\mathrm{4} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\mathrm{tan}\:{x}=\mathrm{4} \\ $$
Commented by peter frank last updated on 25/Dec/21
great
$$\mathrm{great} \\ $$
Commented by mnjuly1970 last updated on 24/Dec/21
  very nice solution sir...thank you
$$\:\:{very}\:{nice}\:{solution}\:{sir}…{thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *