Menu Close

if-1-u-x2-y2-z2-then-x-u-x-y-u-y-z-u-z-




Question Number 41028 by Choudharyvishal155@gmail.com last updated on 31/Jul/18
if 1/u = (√((x2 + y2 +z2)))  then x∂u/∂x + y∂u/∂y + z∂u/∂z = ?
$${if}\:\mathrm{1}/{u}\:=\:\sqrt{\left({x}\mathrm{2}\:+\:{y}\mathrm{2}\:+{z}\mathrm{2}\right)} \\ $$$${then}\:{x}\partial{u}/\partial{x}\:+\:{y}\partial{u}/\partial{y}\:+\:{z}\partial{u}/\partial{z}\:=\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 31/Jul/18
u=(1/( (√(x^2 +y^2 +z^2 ))))  so  (∂u/∂x)=((−1)/2)(x^2 +y^2 +z^2 )^((−3)/2) ×2x  x(∂u/∂x)+y(∂u/∂y)+z(∂u/∂z)=−(x^2 +y^2 +z^2 )(x^2 +y^2 +z^2 )^((−3)/2)     =−(x^2 +y^2 +z^2 )^((−1)/2) =−(1/( (√(x^2 +y^2 +z^2 )))) =−u
$${u}=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\:\:{so}\:\:\frac{\partial{u}}{\partial{x}}=\frac{−\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\frac{−\mathrm{3}}{\mathrm{2}}} ×\mathrm{2}{x} \\ $$$${x}\frac{\partial{u}}{\partial{x}}+{y}\frac{\partial{u}}{\partial{y}}+{z}\frac{\partial{u}}{\partial{z}}=−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\frac{−\mathrm{3}}{\mathrm{2}}} \\ $$$$\:\:=−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} =−\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\:=−{u} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *