Menu Close

If-1-x-1-1-x-1-x-1-1-x-1-find-x-




Question Number 92605 by som(math1967) last updated on 08/May/20
If ((1+x)/(1+(√(1+x)))) +((1−x)/(1−(√(1−x)))) =1  find x
If1+x1+1+x+1x11x=1findx
Commented by behi83417@gmail.com last updated on 08/May/20
(((1+x)(1−(√(1+x))))/(−x))+(((1−x)(1+(√(1−x))))/x)=1  ⇒(1+x)(√(1+x))−(1+x)+(1−x)(√(1−x))+(1−x)=x  ⇒(1+x)(√(1+x))+(1−x)(√(1−x))=3x  (−1<x<1,x≠0,let:x=cos2t)⇒  2c^2 .(√2)c+2s^2 .(√2)s=3(c^2 −s^2 )  ⇒2(√2)(c^3 +s^3 )=3(c^2 −s^2 )  ⇒2(√2)(c+s)(c^2 +s^2 −cs)=3(c+s)(c−s)  1.c+s=0⇒(√2)cos(t−(π/4))=0⇒t=(π/4)(≡x=0:not ok)  ⇒2(√2)(1−cs)=3(c−s)  ⇒8(1−2cs+c^2 s^2 )=9(c^2 +s^2 −2cs)  ⇒8c^2 s^2 +2cs−1=0  ⇒cs=((−1±(√(1+8)))/8)=(1/4),−(1/2)  1.   cs=(1/4)⇒sin2t=(1/2)⇒x=cos2t=((√3)/2)  2.   cs=−(1/2)⇒sin2t=−1⇒x=cos2t=0 [not ok]
(1+x)(11+x)x+(1x)(1+1x)x=1(1+x)1+x(1+x)+(1x)1x+(1x)=x(1+x)1+x+(1x)1x=3x(1<x<1,x0,let:x=cos2t)2c2.2c+2s2.2s=3(c2s2)22(c3+s3)=3(c2s2)22(c+s)(c2+s2cs)=3(c+s)(cs)1.c+s=02cos(tπ4)=0t=π4(x=0:notok)22(1cs)=3(cs)8(12cs+c2s2)=9(c2+s22cs)8c2s2+2cs1=0cs=1±1+88=14,121.cs=14sin2t=12x=cos2t=322.cs=12sin2t=1x=cos2t=0[notok]
Commented by Tony Lin last updated on 08/May/20
let (√(1+x))=a,(√(1−x))=b,a^2 +b^2 =2  (a^2 /(1+a))+(b^2 /(1−b))=1  a^2 −a^2 b+b^2 +ab^2 =1+a−b−ab  1−ab(a−b)−(a−b)+ab=0  (1+ab)[1−(a−b)]=0  a−b=1 or ab=−1(false)  (√(1+x))−(√(1−x))=1  1+x=(1+(√(1−x)))^2   2x−1=2(√(1−x))  4x^2 −4x+1=4−4x  x^2 =(3/4)  x=±((√3)/2)  but ((1−((√3)/2))/(1+(√(1−((√3)/2)))))+((1+((√3)/2))/(1−(√(1+((√3)/2)))))<0 (−5)  ∴x=((√3)/2)
let1+x=a,1x=b,a2+b2=2a21+a+b21b=1a2a2b+b2+ab2=1+abab1ab(ab)(ab)+ab=0(1+ab)[1(ab)]=0ab=1orab=1(false)1+x1x=11+x=(1+1x)22x1=21x4x24x+1=44xx2=34x=±32but1321+132+1+3211+32<0(5)x=32
Commented by som(math1967) last updated on 08/May/20
Thanks sir
Thankssir
Commented by som(math1967) last updated on 08/May/20
Thanks sir
Thankssir
Answered by MJS last updated on 08/May/20
−1≤x≤1∧x≠0  (((1+x)(1−(√(1+x))))/x)+(((1−x)(1+(√(1−x))))/x)=1  (1+x)^(3/2) +(1−x)^(3/2) =3x  0<x≤1  x=sin^2  t  cos^3  t +(1+sin^2  t)^(3/2) =3sin^2  t  (1+sin^2  t)^3 =(3sin^2  t −cos^3  t)^2   sin t =s∧cos t =c∧s=(√(1−c^2 ))  c^6 +3c^5 +(3/2)c^4 −3c^3 −3c^2 +(1/2)=0  c=z−1  z^6 −3z^5 +(3/2)z^4 +z^3 =0  z^3 (z−2)(z^2 −z−(1/2))=0  (c−1)(c+1)^3 (c^2 +c−(1/2))=0  cos t =±1∨cos t =−(1/2)±((√3)/2)  ⇒ only solution is  cos t =−(1/2)+((√3)/2) ⇒ sin^2  t =x=((√3)/2)
1x1x0(1+x)(11+x)x+(1x)(1+1x)x=1(1+x)3/2+(1x)3/2=3x0<x1x=sin2tcos3t+(1+sin2t)3/2=3sin2t(1+sin2t)3=(3sin2tcos3t)2sint=scost=cs=1c2c6+3c5+32c43c33c2+12=0c=z1z63z5+32z4+z3=0z3(z2)(z2z12)=0(c1)(c+1)3(c2+c12)=0cost=±1cost=12±32onlysolutioniscost=12+32sin2t=x=32
Commented by som(math1967) last updated on 08/May/20
Thank you sir
Thankyousir
Commented by MJS last updated on 08/May/20
you′re welcome  it′s also possible to square it:  (1−x)^(3/2) +(1+x)^(3/2) =3x  6x^2 +2+2(1−x)^(3/2) (1+x)^(3/2) =9x^2   2(1−x)^(3/2) (1+x)^(3/2) =3x^2 −2  4(1−x)^3 (1+x)^3 =(3x^2 −2)^2   4x^6 −3x^4 =0  x^4 (4x^2 −3)=0  0<x≤1 ⇒ x=((√3)/2)
yourewelcomeitsalsopossibletosquareit:(1x)3/2+(1+x)3/2=3x6x2+2+2(1x)3/2(1+x)3/2=9x22(1x)3/2(1+x)3/2=3x224(1x)3(1+x)3=(3x22)24x63x4=0x4(4x23)=00<x1x=32
Commented by som(math1967) last updated on 08/May/20
Nice sir thanks again
Nicesirthanksagain

Leave a Reply

Your email address will not be published. Required fields are marked *