Menu Close

if-1-x-1-x-2-1-x-128-r-0-n-x-r-then-find-n-




Question Number 96318 by  M±th+et+s last updated on 31/May/20
if  (1+x)(1+x^2 ).....(1+x^(128) )=Σ_(r=0) ^n x^r   then find n
$${if} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)…..\left(\mathrm{1}+{x}^{\mathrm{128}} \right)=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{r}} \\ $$$${then}\:{find}\:{n} \\ $$
Commented by mr W last updated on 31/May/20
n=1+2+3+...+128=((128×129)/2)=8256
$${n}=\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{128}=\frac{\mathrm{128}×\mathrm{129}}{\mathrm{2}}=\mathrm{8256} \\ $$
Commented by  M±th+et+s last updated on 31/May/20
thanks sir
$${thanks}\:{sir} \\ $$
Commented by mr W last updated on 31/May/20
but  (1+x)(1+x^2 ).....(1+x^(128) )=Σ_(r=0) ^n a_r x^r ≠Σ_(r=0) ^n x^r
$${but} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)…..\left(\mathrm{1}+{x}^{\mathrm{128}} \right)=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{r}} {x}^{{r}} \neq\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{r}} \\ $$
Commented by  M±th+et+s last updated on 31/May/20
yes sorry its (1+x)(1+x^2 )(1+x^4 )....(1+x^(128) )
$${yes}\:{sorry}\:{its}\:\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)….\left(\mathrm{1}+{x}^{\mathrm{128}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *