Menu Close

If-1-x-3-n-r-0-n-a-r-x-r-1-x-3n-2r-then-the-value-of-a-r-where-n-N-is-1-n-C-r-3-r-2-n-C-3r-3-n-C-r-1-2-r-1-4-n-C-r-2-r-




Question Number 23700 by Tinkutara last updated on 04/Nov/17
If (1 − x^3 )^n  = Σ_(r=0) ^n a_r x^r (1 − x)^(3n−2r) , then  the value of a_r , where n ∈ N is  (1)^n C_r ∙3^r   (2)^n C_(3r)   (3)^n C_(r−1) 2^(r−1)   (4)^n C_r 2^r
If(1x3)n=nr=0arxr(1x)3n2r,thenthevalueofar,wherenNis(1)nCr3r(2)nC3r(3)nCr12r1(4)nCr2r
Commented by ajfour last updated on 04/Nov/17
If n=1  1−x^3 =a_0 (1−x)^3 +a_1 x(1−x)  ⇒ a_0 =1  and  a_1 =3  if we check options with n=1  (1) gives a_0 =1, a_1 =3  (2) a_0 =1, a_1 =!  (3) a_0 =! , a_1 =1  (4) a_0 =1 , a_1 =2  So only option (1) qualifies..
Ifn=11x3=a0(1x)3+a1x(1x)a0=1anda1=3ifwecheckoptionswithn=1(1)givesa0=1,a1=3(2)a0=1,a1=!(3)a0=!,a1=1(4)a0=1,a1=2Soonlyoption(1)qualifies..
Commented by Tinkutara last updated on 05/Nov/17
Not any proof?
Notanyproof?
Commented by ajfour last updated on 05/Nov/17
i will try ..
iwilltry..

Leave a Reply

Your email address will not be published. Required fields are marked *