Menu Close

If-1-x-n-C-0-C-1-x-C-2-x-2-C-3-x-3-C-n-x-n-Prove-that-0-i-lt-j-n-i-j-C-i-C-j-n-2-2n-1-1-2-2n-C-n-




Question Number 22739 by Tinkutara last updated on 22/Oct/17
If (1 + x)^n  = C_0  + C_1 x + C_2 x^2  + C_3 x^3   + ... + C_n x^n ,  Prove that ΣΣ_(0≤i<j≤n) (i + j)C_i C_j  =  n(2^(2n−1)  − (1/2)^(2n) C_n )
If(1+x)n=C0+C1x+C2x2+C3x3++Cnxn,ProvethatΣΣ0i<jn(i+j)CiCj=n(22n1122nCn)

Leave a Reply

Your email address will not be published. Required fields are marked *