Menu Close

If-1-x-n-C-0-C-1-x-C-2-x-2-C-3-x-3-C-n-x-n-prove-that-2-2-1-2-C-0-2-3-2-3-C-1-2-4-3-4-C-2-2-n-2-n-1-n-2-C-n-3-n-2-2n-5-




Question Number 22618 by Tinkutara last updated on 21/Oct/17
If (1 + x)^n  = C_0  + C_1 x + C_2 x^2  + C_3 x^3   + ... + C_n x^n , prove that  (2^2 /(1.2))C_0  + (2^3 /(2.3))C_1  + (2^4 /(3.4))C_2  + ... +  (2^(n+2) /((n + 1)(n + 2)))C_n  = ((3^(n+2)  − 2n − 5)/((n + 1)(n + 2)))
$${If}\:\left(\mathrm{1}\:+\:{x}\right)^{{n}} \:=\:{C}_{\mathrm{0}} \:+\:{C}_{\mathrm{1}} {x}\:+\:{C}_{\mathrm{2}} {x}^{\mathrm{2}} \:+\:{C}_{\mathrm{3}} {x}^{\mathrm{3}} \\ $$$$+\:…\:+\:{C}_{{n}} {x}^{{n}} ,\:{prove}\:{that} \\ $$$$\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{1}.\mathrm{2}}{C}_{\mathrm{0}} \:+\:\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{2}.\mathrm{3}}{C}_{\mathrm{1}} \:+\:\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{3}.\mathrm{4}}{C}_{\mathrm{2}} \:+\:…\:+ \\ $$$$\frac{\mathrm{2}^{{n}+\mathrm{2}} }{\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{2}\right)}{C}_{{n}} \:=\:\frac{\mathrm{3}^{{n}+\mathrm{2}} \:−\:\mathrm{2}{n}\:−\:\mathrm{5}}{\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{2}\right)} \\ $$
Answered by ajfour last updated on 21/Oct/17
∫_0 ^(  x) (1+x)^n dx=((C_0 x)/1)+((C_1 x^2 )/2)+((C_2 x^3 )/3)+..  ⇒(((1+x)^(n+1) −1)/(n+1)) =((C_0 x)/1)+((C_1 x^2 )/2)+((C_3 x^3 )/3)+...  ∫_0 ^(  2) (((1+x)^(n+1) −1)/(n+1))dx =((2^2 C_0 )/(1.2))+((2^3 C_1 )/(2.3))+..  =[(((1+x)^(n+2) −(n+2)x)/((n+1)(n+2)))]∣_0 ^2    =((3^(n+2) −2n−4−1)/((n+1)(n+2)))  =((3^(n+2) −2n−5)/((n+1)(n+2))) .
$$\int_{\mathrm{0}} ^{\:\:{x}} \left(\mathrm{1}+{x}\right)^{{n}} {dx}=\frac{{C}_{\mathrm{0}} {x}}{\mathrm{1}}+\frac{{C}_{\mathrm{1}} {x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{C}_{\mathrm{2}} {x}^{\mathrm{3}} }{\mathrm{3}}+.. \\ $$$$\Rightarrow\frac{\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}\:=\frac{{C}_{\mathrm{0}} {x}}{\mathrm{1}}+\frac{{C}_{\mathrm{1}} {x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{C}_{\mathrm{3}} {x}^{\mathrm{3}} }{\mathrm{3}}+… \\ $$$$\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \frac{\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{{n}+\mathrm{1}}{dx}\:=\frac{\mathrm{2}^{\mathrm{2}} {C}_{\mathrm{0}} }{\mathrm{1}.\mathrm{2}}+\frac{\mathrm{2}^{\mathrm{3}} {C}_{\mathrm{1}} }{\mathrm{2}.\mathrm{3}}+.. \\ $$$$=\left[\frac{\left(\mathrm{1}+{x}\right)^{{n}+\mathrm{2}} −\left({n}+\mathrm{2}\right){x}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\right]\mid_{\mathrm{0}} ^{\mathrm{2}} \: \\ $$$$=\frac{\mathrm{3}^{{n}+\mathrm{2}} −\mathrm{2}{n}−\mathrm{4}−\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:\:=\frac{\mathrm{3}^{\boldsymbol{{n}}+\mathrm{2}} −\mathrm{2}\boldsymbol{{n}}−\mathrm{5}}{\left(\boldsymbol{{n}}+\mathrm{1}\right)\left(\boldsymbol{{n}}+\mathrm{2}\right)}\:. \\ $$
Commented by Tinkutara last updated on 21/Oct/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *