Menu Close

If-1-x-n-C-0-C-1-x-C-2-x-2-C-3-x-3-C-n-x-n-then-prove-that-0-i-lt-j-n-i-n-C-i-j-n-C-j-n-2-2-r-0-n-1-n-C-r-




Question Number 23250 by Tinkutara last updated on 28/Oct/17
If (1 + x)^n  = C_0  + C_1 x + C_2 x^2  + C_3 x^3   + ... + C_n x^n , then prove that  ΣΣ_(0≤i<j≤n) ((i/(^n C_i )) + (j/(^n C_j ))) = (n^2 /2)(Σ_(r=0) ^n (1/(^n C_r ))).
$${If}\:\left(\mathrm{1}\:+\:{x}\right)^{{n}} \:=\:{C}_{\mathrm{0}} \:+\:{C}_{\mathrm{1}} {x}\:+\:{C}_{\mathrm{2}} {x}^{\mathrm{2}} \:+\:{C}_{\mathrm{3}} {x}^{\mathrm{3}} \\ $$$$+\:…\:+\:{C}_{{n}} {x}^{{n}} ,\:{then}\:{prove}\:{that} \\ $$$$\underset{\mathrm{0}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left(\frac{{i}}{\:^{{n}} {C}_{{i}} }\:+\:\frac{{j}}{\:^{{n}} {C}_{{j}} }\right)\:=\:\frac{{n}^{\mathrm{2}} }{\mathrm{2}}\left(\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:^{{n}} {C}_{{r}} }\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *