Menu Close

if-1-x-n-i-0-n-a-i-x-i-and-1-x-n-1-i-0-n-1-b-i-x-i-calculate-i-0-n-a-i-i-0-n-1-b-i-




Question Number 39520 by math khazana by abdo last updated on 07/Jul/18
if (1+x)^n  =Σ_(i=0) ^n  a_i x^i     and  (1+x)^(n+1)  =Σ_(i=0) ^(n+1)  b_i  x^i   calculate  ((∐_(i=0) ^n  a_i )/(Π_(i=0) ^(n+1)  b_i )) .
if(1+x)n=i=0naixiand(1+x)n+1=i=0n+1bixicalculatei=0naii=0n+1bi.
Commented by math khazana by abdo last updated on 07/Jul/18
we have (x+1)^n  =Σ_(i=0) ^n  C_n ^i  x^i  ⇒a_i =C_n ^i  =((n!)/(i!(n−i)!))  also (x+1)^(n+1)  =Σ_(i=0) ^(n+1)  C_(n+1) ^i  x^i  ⇒ b_i = C_(n+1) ^i   =(((n+1)!)/(i!(n+1−i)!)) ⇒  ((Π_(i=0) ^n  a_i )/(Π_(i=0) ^(n+1)  b_i )) = ((Π_(i=0) ^n     ((n!)/(i!(n−i)!)))/(Π_(i=0) ^(n+1)    (((n+1)!)/(i!(n+1−i)!))))  = (1/(n+1)) ((Π_(i=0) ^n   (1/((n−i)!)))/(Π_(i=0) ^n (1/((n+1−i)!)))) =(1/(n+1))  Π_(i=0) ^n  (((n+1−i)!)/((n−i)!))  =(1/(n+1))Π_(i=0) ^n  (n+1−i)  = (1/(n+1)) (n+1)n(n−1).....1  =n!
wehave(x+1)n=i=0nCnixiai=Cni=n!i!(ni)!also(x+1)n+1=i=0n+1Cn+1ixibi=Cn+1i=(n+1)!i!(n+1i)!i=0naii=0n+1bi=i=0nn!i!(ni)!i=0n+1(n+1)!i!(n+1i)!=1n+1i=0n1(ni)!i=0n1(n+1i)!=1n+1i=0n(n+1i)!(ni)!=1n+1i=0n(n+1i)=1n+1(n+1)n(n1)..1=n!
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18
=(a_0 /b_0 )×(a_1 /b_1 )×(a_2 /b_2 )×...×(a_r /b_r )×...×(a_n /b_n )×(1/b_(n+1) )  now a_r =nC_r =((n!)/(r!(n−r)!))  b_r =n+1_C_r  =(((n+1)!)/(r!(n+1−r)!))=(((n+1)n!)/(r!(n+1−r)(n−r)!))  so (a_r /b_r )=((n+1)/(n+1−r))  (a_0 /b_0 )×(a_1 /b_1 )×(a_2 /b_2 )×...×(a_n /b_n )×(1/b_(n+1) )  =((n+1)/(n+1−0))×((n+1)/(n+1−1))×((n+1)/(n+1−2))×...×((n+1)/(n+1−n))×(1/1)  b_(n+1) =n+1_C_(n+1)  =1  =(((n+1)^(n+1) )/((n+1)!))  pls check
=a0b0×a1b1×a2b2××arbr××anbn×1bn+1nowar=nCr=n!r!(nr)!br=n+1Cr=(n+1)!r!(n+1r)!=(n+1)n!r!(n+1r)(nr)!soarbr=n+1n+1ra0b0×a1b1×a2b2××anbn×1bn+1=n+1n+10×n+1n+11×n+1n+12××n+1n+1n×11bn+1=n+1Cn+1=1=(n+1)n+1(n+1)!plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *