Menu Close

If-15-10-1-3-a-lt-20-find-a-R-




Question Number 112280 by bemath last updated on 07/Sep/20
  If 15 ≤ ∣10−(1/3)a∣ < 20   find a ∈ R
$$\:\:\mathrm{If}\:\mathrm{15}\:\leqslant\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{a}\mid\:<\:\mathrm{20}\: \\ $$$$\mathrm{find}\:\mathrm{a}\:\in\:\mathbb{R} \\ $$
Answered by john santu last updated on 07/Sep/20
⇒ ∣10−(1/3)a∣ ≥15 ∧ ∣10−(1/3)a∣ < 20  (1) ∣10−(1/3)a∣ ≥ 15    10−(1/3)a ≤ −15 ∪ 10−(1/3)a ≥15  −(1/3)a ≤ −25 ∪ −(1/3)a ≥ 5    a ≥ 75 ∪ a ≤−15  (2) ∣10−(1/3)a∣ < 20    −20 < 10−(1/3)a < 20   −30 < −(1/3)a < 10     −30<a<90  solution (1)∩(2)  −30< a≤ −15 ∪ 75 ≤ a < 90
$$\Rightarrow\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\mid\:\geqslant\mathrm{15}\:\wedge\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\mid\:<\:\mathrm{20} \\ $$$$\left(\mathrm{1}\right)\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\mid\:\geqslant\:\mathrm{15}\: \\ $$$$\:\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\:\leqslant\:−\mathrm{15}\:\cup\:\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\:\geqslant\mathrm{15} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}}{a}\:\leqslant\:−\mathrm{25}\:\cup\:−\frac{\mathrm{1}}{\mathrm{3}}{a}\:\geqslant\:\mathrm{5} \\ $$$$\:\:{a}\:\geqslant\:\mathrm{75}\:\cup\:{a}\:\leqslant−\mathrm{15} \\ $$$$\left(\mathrm{2}\right)\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\mid\:<\:\mathrm{20}\: \\ $$$$\:−\mathrm{20}\:<\:\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}{a}\:<\:\mathrm{20} \\ $$$$\:−\mathrm{30}\:<\:−\frac{\mathrm{1}}{\mathrm{3}}{a}\:<\:\mathrm{10}\: \\ $$$$\:\:−\mathrm{30}<{a}<\mathrm{90} \\ $$$${solution}\:\left(\mathrm{1}\right)\cap\left(\mathrm{2}\right) \\ $$$$−\mathrm{30}<\:{a}\leqslant\:−\mathrm{15}\:\cup\:\mathrm{75}\:\leqslant\:{a}\:<\:\mathrm{90} \\ $$
Answered by ajfour last updated on 07/Sep/20
(a−30)^2 ≥45^2     &   (a−30)^2 <60^2   ⇒        45≤ a−30 < 60     or  −60 < a−30 ≤ −45
$$\left({a}−\mathrm{30}\right)^{\mathrm{2}} \geqslant\mathrm{45}^{\mathrm{2}} \:\:\:\:\&\:\:\:\left({a}−\mathrm{30}\right)^{\mathrm{2}} <\mathrm{60}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\mathrm{45}\leqslant\:{a}−\mathrm{30}\:<\:\mathrm{60}\:\:\: \\ $$$${or}\:\:−\mathrm{60}\:<\:{a}−\mathrm{30}\:\leqslant\:−\mathrm{45} \\ $$
Commented by bemath last updated on 07/Sep/20
(a−30)^2  ≥ 45^2
$$\left(\mathrm{a}−\mathrm{30}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{45}^{\mathrm{2}} \: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *