Menu Close

if-2-2-2-2-evaluate-




Question Number 62334 by smartsmith459@gmail.com last updated on 19/Jun/19
if α^2 +β^2 = (α+β)^2 −2αβ evaluate(α−β)
ifα2+β2=(α+β)22αβevaluate(αβ)
Answered by Kunal12588 last updated on 20/Jun/19
α^2 +β^2 =(α+β)^2 −2αβ  ⇒α^2 +β^2 −2αβ=(α+β)^2 −4αβ  ⇒α^2 +β^2 −2αβ=(α−β)^2   ⇒(α−β)=(√(α^2 +β^2 −2αβ))
α2+β2=(α+β)22αβα2+β22αβ=(α+β)24αβα2+β22αβ=(αβ)2(αβ)=α2+β22αβ
Answered by MJS last updated on 20/Jun/19
α^2 +β^2 =α^2 +2αβ+β^2 −2αβ  α^2 +β^2 =α^2 +β^2   ⇒ true for all α, β   ⇒ α−β=α−β  no other conclusion possible
α2+β2=α2+2αβ+β22αβα2+β2=α2+β2trueforallα,βαβ=αβnootherconclusionpossible

Leave a Reply

Your email address will not be published. Required fields are marked *