Menu Close

If-2-x-4-y-8-z-and-xyz-288-then-find-1-2x-1-4y-1-8z-




Question Number 113876 by Aina Samuel Temidayo last updated on 16/Sep/20
If 2^x =4^y =8^z  and xyz=288, then find  (1/(2x))+(1/(4y))+(1/(8z))
If2x=4y=8zandxyz=288,thenfind12x+14y+18z
Answered by Olaf last updated on 16/Sep/20
2^x  = 4^y  = 8^z   log_2 2^x  = log_2 4^y  = log_2 8^z   xlog_2 2 = ylog_2 2^2  = zlog_2 2^3   x = 2y = 3z  xyz = 288  x((x/2))((x/3)) = 288  x^3  = 6×288 = 1728  x = ^3 (√(1728)) = ^3 (√(12^3 )) = 12  y = (x/2) = 6  z = (x/3) = 4  (1/(2x))+(1/(4y))+(1/(8z)) = (1/(2.12))+(1/(4.6))+(1/(8.4))  = (1/(24))+(1/(24))+(1/(32)) = ((11)/(96))
2x=4y=8zlog22x=log24y=log28zxlog22=ylog222=zlog223x=2y=3zxyz=288x(x2)(x3)=288x3=6×288=1728x=31728=3123=12y=x2=6z=x3=412x+14y+18z=12.12+14.6+18.4=124+124+132=1196
Commented by Aina Samuel Temidayo last updated on 16/Sep/20
Thanks.
Thanks.
Answered by MJS_new last updated on 16/Sep/20
2^x =(2^2 )^y =(2^3 )^z  ⇒ y=(x/2)∧z=(x/3)  xyz=(x^3 /6)=288 ⇒ x=12  (1/(2x))+(1/(4y))+(1/(8z))=((11)/(8x))=((11)/(96))
2x=(22)y=(23)zy=x2z=x3xyz=x36=288x=1212x+14y+18z=118x=1196
Answered by john santu last updated on 16/Sep/20
(1)2^x =2^(2y) ⇒x=2y  (2)2^x =2^(3z) ⇒x=3z  (3)2^(2y) =2^(3z) ⇒y=((3z)/2)  (4)xyz = 288⇒x((x/2))((x/3))=12^2 .2  ⇒ x^3  =12^3 → { ((x=12)),((y=6 )),((z=4)) :}  therefore (1/(2x))+(1/(4y))+(1/(8z))=(1/(24))+(1/(24))+(1/(32))       = (2/(24))+(1/(32))=(2/(8.3))+(1/(8.4)) = ((8+3)/(8.3.4)) = ((11)/(96))
(1)2x=22yx=2y(2)2x=23zx=3z(3)22y=23zy=3z2(4)xyz=288x(x2)(x3)=122.2x3=123{x=12y=6z=4therefore12x+14y+18z=124+124+132=224+132=28.3+18.4=8+38.3.4=1196
Commented by Aina Samuel Temidayo last updated on 16/Sep/20
Thanks.
Thanks.
Answered by floor(10²Eta[1]) last updated on 16/Sep/20
x=2y=3z  xyz=3z.((3z)/2).z=((9z^3 )/2)=288⇒z=4  ⇒x=12 and y=6  (1/(2x))+(1/(4y))+(1/(8z))=(1/(24))+(1/(24))+(1/(32))=((11)/(96))
x=2y=3zxyz=3z.3z2.z=9z32=288z=4x=12andy=612x+14y+18z=124+124+132=1196

Leave a Reply

Your email address will not be published. Required fields are marked *