Question Number 82929 by VBash last updated on 26/Feb/20
$${if}\:\mathrm{2}{B}+{A}=\mathrm{45}° \\ $$$${show}\:{that}; \\ $$$${tan}\:{B}=\:\frac{\mathrm{1}−\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}}{\mathrm{1}+\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}} \\ $$
Answered by jagoll last updated on 26/Feb/20
$$\mathrm{A}+\mathrm{B}\:=\:\mathrm{45}^{\mathrm{o}} \:−\:\mathrm{B} \\ $$$$\mathrm{tan}\:\left(\mathrm{A}+\mathrm{B}\right)\:=\:\mathrm{tan}\:\left(\mathrm{45}^{\mathrm{o}} −\mathrm{B}\right) \\ $$$$\frac{\mathrm{tan}\:\mathrm{A}+\mathrm{tan}\:\mathrm{B}}{\mathrm{1}−\mathrm{tan}\:\mathrm{A}.\mathrm{tan}\:\mathrm{B}}\:=\:\frac{\mathrm{1}−\mathrm{tan}\:\mathrm{B}}{\mathrm{1}+\mathrm{tan}\:\mathrm{B}} \\ $$$$\left(\mathrm{tan}\:\mathrm{A}+\mathrm{tan}\:\mathrm{B}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{B}\right)\:=\: \\ $$$$\left(\mathrm{1}−\mathrm{tanA}\:\mathrm{tan}\:\mathrm{B}\right)\left(\mathrm{1}−\mathrm{tan}\:\mathrm{B}\right) \\ $$$$\mathrm{tan}\:\mathrm{A}\:=\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}+\mathrm{2tan}\:\mathrm{B}−\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2tan}\:\mathrm{B}−\mathrm{1}} \\ $$$$\mathrm{or}\:\mathrm{tan}\:\mathrm{A}\:=\:\frac{\mathrm{1}−\mathrm{2tan}\:\mathrm{B}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}}{\mathrm{1}+\mathrm{2tan}\:\mathrm{B}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}} \\ $$$$ \\ $$
Commented by john santu last updated on 26/Feb/20
$$\mathrm{good}\:\mathrm{sir} \\ $$
Commented by som(math1967) last updated on 26/Feb/20
$${How}\:{tan}\left(\mathrm{45}°−{B}\right)=\frac{\mathrm{1}−{tanA}}{\mathrm{1}+{tanA}}\:??? \\ $$
Commented by jagoll last updated on 26/Feb/20
$$\mathrm{hahaha}..\mathrm{sorry}.\:\mathrm{it}\:\mathrm{my}\:\mathrm{typo} \\ $$
Answered by TANMAY PANACEA last updated on 26/Feb/20
$${tan}\left(\mathrm{2}{B}\right)={tan}\left(\mathrm{45}−{A}\right) \\ $$$${let}\:{tanA}={a}\:\:\:{tanB}={b} \\ $$$$\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }=\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}} \\ $$$$\frac{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }=\frac{\mathrm{1}−{a}+\mathrm{1}+{a}}{\mathrm{1}−{a}−\mathrm{1}−{a}} \\ $$$$\frac{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }=\frac{\mathrm{2}}{−\mathrm{2}{a}} \\ $$$$\frac{−{a}}{\mathrm{1}}=\frac{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} } \\ $$$${a}=\frac{{b}^{\mathrm{2}} +\mathrm{2}{b}−\mathrm{1}}{{b}^{\mathrm{2}} −\mathrm{2}{b}−\mathrm{1}}\:\:{pls}\:{recheck}\:{the}\:{question} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by jagoll last updated on 26/Feb/20
$$\mathrm{it}\:\mathrm{that}\:\mathrm{the}\:\mathrm{question}\:\mathrm{wrong} \\ $$