Menu Close

if-2B-A-45-show-that-tan-B-1-2tanA-tan-2-A-1-2tanA-tan-2-A-




Question Number 82929 by VBash last updated on 26/Feb/20
if 2B+A=45°  show that;  tan B= ((1−2tanA−tan^2 A)/(1+2tanA−tan^2 A))
$${if}\:\mathrm{2}{B}+{A}=\mathrm{45}° \\ $$$${show}\:{that}; \\ $$$${tan}\:{B}=\:\frac{\mathrm{1}−\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}}{\mathrm{1}+\mathrm{2}{tanA}−{tan}^{\mathrm{2}} {A}} \\ $$
Answered by jagoll last updated on 26/Feb/20
A+B = 45^o  − B  tan (A+B) = tan (45^o −B)  ((tan A+tan B)/(1−tan A.tan B)) = ((1−tan B)/(1+tan B))  (tan A+tan B)(1+tan B) =   (1−tanA tan B)(1−tan B)  tan A = ((tan^2 B+2tan B−1)/(tan^2 B−2tan B−1))  or tan A = ((1−2tan B−tan^2 B)/(1+2tan B−tan^2 B))
$$\mathrm{A}+\mathrm{B}\:=\:\mathrm{45}^{\mathrm{o}} \:−\:\mathrm{B} \\ $$$$\mathrm{tan}\:\left(\mathrm{A}+\mathrm{B}\right)\:=\:\mathrm{tan}\:\left(\mathrm{45}^{\mathrm{o}} −\mathrm{B}\right) \\ $$$$\frac{\mathrm{tan}\:\mathrm{A}+\mathrm{tan}\:\mathrm{B}}{\mathrm{1}−\mathrm{tan}\:\mathrm{A}.\mathrm{tan}\:\mathrm{B}}\:=\:\frac{\mathrm{1}−\mathrm{tan}\:\mathrm{B}}{\mathrm{1}+\mathrm{tan}\:\mathrm{B}} \\ $$$$\left(\mathrm{tan}\:\mathrm{A}+\mathrm{tan}\:\mathrm{B}\right)\left(\mathrm{1}+\mathrm{tan}\:\mathrm{B}\right)\:=\: \\ $$$$\left(\mathrm{1}−\mathrm{tanA}\:\mathrm{tan}\:\mathrm{B}\right)\left(\mathrm{1}−\mathrm{tan}\:\mathrm{B}\right) \\ $$$$\mathrm{tan}\:\mathrm{A}\:=\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}+\mathrm{2tan}\:\mathrm{B}−\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}−\mathrm{2tan}\:\mathrm{B}−\mathrm{1}} \\ $$$$\mathrm{or}\:\mathrm{tan}\:\mathrm{A}\:=\:\frac{\mathrm{1}−\mathrm{2tan}\:\mathrm{B}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}}{\mathrm{1}+\mathrm{2tan}\:\mathrm{B}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{B}} \\ $$$$ \\ $$
Commented by john santu last updated on 26/Feb/20
good sir
$$\mathrm{good}\:\mathrm{sir} \\ $$
Commented by som(math1967) last updated on 26/Feb/20
How tan(45°−B)=((1−tanA)/(1+tanA)) ???
$${How}\:{tan}\left(\mathrm{45}°−{B}\right)=\frac{\mathrm{1}−{tanA}}{\mathrm{1}+{tanA}}\:??? \\ $$
Commented by jagoll last updated on 26/Feb/20
hahaha..sorry. it my typo
$$\mathrm{hahaha}..\mathrm{sorry}.\:\mathrm{it}\:\mathrm{my}\:\mathrm{typo} \\ $$
Answered by TANMAY PANACEA last updated on 26/Feb/20
tan(2B)=tan(45−A)  let tanA=a   tanB=b  ((2b)/(1−b^2 ))=((1−a)/(1+a))  ((2b+1−b^2 )/(2b−1+b^2 ))=((1−a+1+a)/(1−a−1−a))  ((2b+1−b^2 )/(2b−1+b^2 ))=(2/(−2a))  ((−a)/1)=((2b−1+b^2 )/(2b+1−b^2 ))  a=((b^2 +2b−1)/(b^2 −2b−1))  pls recheck the question
$${tan}\left(\mathrm{2}{B}\right)={tan}\left(\mathrm{45}−{A}\right) \\ $$$${let}\:{tanA}={a}\:\:\:{tanB}={b} \\ $$$$\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }=\frac{\mathrm{1}−{a}}{\mathrm{1}+{a}} \\ $$$$\frac{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }=\frac{\mathrm{1}−{a}+\mathrm{1}+{a}}{\mathrm{1}−{a}−\mathrm{1}−{a}} \\ $$$$\frac{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }=\frac{\mathrm{2}}{−\mathrm{2}{a}} \\ $$$$\frac{−{a}}{\mathrm{1}}=\frac{\mathrm{2}{b}−\mathrm{1}+{b}^{\mathrm{2}} }{\mathrm{2}{b}+\mathrm{1}−{b}^{\mathrm{2}} } \\ $$$${a}=\frac{{b}^{\mathrm{2}} +\mathrm{2}{b}−\mathrm{1}}{{b}^{\mathrm{2}} −\mathrm{2}{b}−\mathrm{1}}\:\:{pls}\:{recheck}\:{the}\:{question} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by jagoll last updated on 26/Feb/20
it that the question wrong
$$\mathrm{it}\:\mathrm{that}\:\mathrm{the}\:\mathrm{question}\:\mathrm{wrong} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *