Menu Close

If-2cos-sin-1-2-0-lt-lt-90-then-2sin-cos-




Question Number 115062 by Sudip last updated on 23/Sep/20
If  2cosθ−sinθ=(1/( (√2)))  (0°<θ<90°)  then  2sinθ+cosθ= ¿
If2cosθsinθ=12(0°<θ<90°)then2sinθ+cosθ=¿
Answered by PRITHWISH SEN 2 last updated on 23/Sep/20
let 2sin θ+cos θ = k ....(ii)  then by solving eqn (i)(given) & (ii) we get  sin θ = (1/5)(2k−(1/( (√2)))) & cos θ= (1/5)(k+(√2))  from sin^2 θ+cos^2 θ=1 we get  k=±(3/( (√2)))  as 0<θ<90  ∴ 2sin 𝛉+cos θ = (3/( (√2)))
let2sinθ+cosθ=k.(ii)thenbysolvingeqn(i)(given)&(ii)wegetsinθ=15(2k12)&cosθ=15(k+2)fromsin2θ+cos2θ=1wegetk=±32as0<θ<902sinθ+cosθ=32
Answered by Dwaipayan Shikari last updated on 23/Sep/20
4cos^2 θ+sin^2 θ−4sinθcosθ=((sin^2 θ+cos^2 θ)/2)  8cos^2 θ+2sin^2 θ−8sinθcosθ=sin^2 θ+cos^2 θ  7cos^2 θ+sin^2 θ−8sinθcosθ=0  7cos^2 θ−7sinθcosθ−cosθsinθ+sin^2 θ=0  7cosθ(cosθ−sinθ)−sinθ(cosθ−sinθ)=0  cosθ=sinθ   ((π/4),−(π/4))  2sinθ+cosθ=±(3/( (√2)))  or  θ=tan^(−1) (1/7)
4cos2θ+sin2θ4sinθcosθ=sin2θ+cos2θ28cos2θ+2sin2θ8sinθcosθ=sin2θ+cos2θ7cos2θ+sin2θ8sinθcosθ=07cos2θ7sinθcosθcosθsinθ+sin2θ=07cosθ(cosθsinθ)sinθ(cosθsinθ)=0cosθ=sinθ(π4,π4)2sinθ+cosθ=±32orθ=tan117

Leave a Reply

Your email address will not be published. Required fields are marked *