Menu Close

If-2f-x-f-x-1-x-sin-x-1-x-Find-1-e-e-f-x-dx-




Question Number 30871 by ajfour last updated on 27/Feb/18
If   2f(x)+f(−x)=(1/x)sin (x−(1/x))  Find   ∫_(1/e) ^(  e) f(x)dx  .
If2f(x)+f(x)=1xsin(x1x)Find1/eef(x)dx.
Commented by abdo imad last updated on 27/Feb/18
let complete the work of sir mrw_2   with f(x)=(1/(3x))sin(x−(1/x)) we have  ∫_(1/e) ^e f(x)dx=(1/3)∫_(1/e) ^e  (1/x)sin(x−(1/x))dx  let use the ch.x=(1/t)⇒  3 ∫_(1/e) ^e  f(x)dx= −∫_(1/e) ^e  t sin((1/t)−t)((−dt)/t^2 )=∫_(1/e) ^e  t sin((1/t)−t)dt  =−∫_(1/e) ^e  t sin(t−(1/t))dt=−3 ∫_(1/e) ^e f(x)dx ⇒  6 ∫_(1/e) ^e  f(x)dx ⇒ ∫_(1/e) ^e f(x)dx=0  ( if we work in a corps  with carecteristic ≠6)
letcompletetheworkofsirmrw2withf(x)=13xsin(x1x)wehave1eef(x)dx=131ee1xsin(x1x)dxletusethech.x=1t31eef(x)dx=1eetsin(1tt)dtt2=1eetsin(1tt)dt=1eetsin(t1t)dt=31eef(x)dx61eef(x)dx1eef(x)dx=0(ifweworkinacorpswithcarecteristic6)
Commented by ajfour last updated on 28/Feb/18
Thank you Sir.
ThankyouSir.
Answered by mrW2 last updated on 27/Feb/18
2f(x)+f(−x)=(1/x)sin (x−(1/x))    ...(i)  ⇒2f(−x)+f(x)=−(1/x)sin (−x+(1/x))   ...(ii)  2(i)−(ii):  3f(x)=(2/x)sin (x−(1/x))−(1/x)sin (x−(1/x))  ⇒f(x)=(1/(3x))sin (x−(1/x))  ∫_(1/e) ^(  e) f(x)dx=(1/3)∫(1/x)sin (x−(1/x))dx  let u=x−(1/x)  u^2 =x^2 +(1/x^2 )−2  u^2 +4=x^2 +(1/x^2 )+2=(x+(1/x))^2   (√(u^2 +2^2 ))=x+(1/x)  du=(1+(1/x^2 ))dx=(x+(1/x))(dx/x)=(√(u^2 +2^2 )) (dx/x)  (dx/x)=(du/( (√(u^2 +2^2 ))))  ∫_(1/e) ^(  e) f(x)dx=(1/3)∫(1/x)sin (x−(1/x))dx  =(1/3)∫_((1/e)−e) ^(e−(1/e)) ((sin u)/( (√(u^2 +2^2 )))) du  =(1/3)∫_((1/e)−e) ^0 ((sin u)/( (√(u^2 +2^2 )))) du+(1/3)∫_0 ^(e−(1/e)) ((sin u)/( (√(u^2 +2^2 )))) du  =−(1/3)∫_0 ^(e−(1/e)) ((sin u)/( (√(u^2 +2^2 )))) du+(1/3)∫_0 ^(e−(1/e)) ((sin u)/( (√(u^2 +2^2 )))) du  =0
2f(x)+f(x)=1xsin(x1x)(i)2f(x)+f(x)=1xsin(x+1x)(ii)2(i)(ii):3f(x)=2xsin(x1x)1xsin(x1x)f(x)=13xsin(x1x)1/eef(x)dx=131xsin(x1x)dxletu=x1xu2=x2+1x22u2+4=x2+1x2+2=(x+1x)2u2+22=x+1xdu=(1+1x2)dx=(x+1x)dxx=u2+22dxxdxx=duu2+221/eef(x)dx=131xsin(x1x)dx=131eee1esinuu2+22du=131ee0sinuu2+22du+130e1esinuu2+22du=130e1esinuu2+22du+130e1esinuu2+22du=0
Commented by abdo imad last updated on 27/Feb/18
sir you are more near from value look that  (1/e)−e=−(e−(1/e)) and the function  u→((sinu)/( (√(u^2  +4)))) is odd so  ∫(...)du=0.
siryouaremorenearfromvaluelookthat1ee=(e1e)andthefunctionusinuu2+4isoddso()du=0.
Commented by mrW2 last updated on 27/Feb/18
thank you sir!  I didn′t look at the range of values.  I was concentriated in how to solve  the integral. It is hard indeed.
thankyousir!Ididntlookattherangeofvalues.Iwasconcentriatedinhowtosolvetheintegral.Itishardindeed.
Commented by mrW2 last updated on 27/Feb/18
Can we solve it, if the question is  find ∫f(x)dx ?
Canwesolveit,ifthequestionisfindf(x)dx?
Commented by prof Abdo imad last updated on 28/Feb/18
perhaps i will try...
perhapsiwilltry
Commented by ajfour last updated on 28/Feb/18
Thank you Sir.
ThankyouSir.
Commented by abdo imad last updated on 28/Feb/18
because you are familiar with dangerous roads like me....
becauseyouarefamiliarwithdangerousroadslikeme.

Leave a Reply

Your email address will not be published. Required fields are marked *