Menu Close

If-2x-2-11x-5-is-a-factor-of-ax-3-17x-2-bx-15-then-what-is-a-and-b-




Question Number 157416 by cortano last updated on 23/Oct/21
 If 2x^2 +11x+5 is a factor of   ax^3 −17x^2 +bx−15 , then what  is a and b ?
If2x2+11x+5isafactorofax317x2+bx15,thenwhatisaandb?
Commented by Rasheed.Sindhi last updated on 23/Oct/21
ax^3 −17x^2 +bx−15 has afactor  2x^2 +11x+5;  a=?,b=?                             _(−)   Other factor=(a/2)x+((−15)/5)=(a/2)x−3   ▶(2x^2 +11x+5)((a/2)x−3)            =ax^3 −17x^2 +bx−15  ▶ax^3 +((11a)/2)x^2 +((5a)/2)x−6x^2 −33x−15            =ax^3 −17x^2 +bx−15  ▶ax^3 +(((11a)/2)−6)x^2 +(((5a)/2)−33)x−15            =ax^3 −17x^2 +bx−15  Comparing coefficients:  ((11a)/2)−6=−17⇒a=((−22)/(11))=−2  ((5a)/2)−33=b⇒b=((5(−2)−66)/2)=−38
ax317x2+bx15hasafactor2x2+11x+5;a=?,b=?Otherfactor=a2x+155=a2x3(2x2+11x+5)(a2x3)=ax317x2+bx15ax3+11a2x2+5a2x6x233x15=ax317x2+bx15ax3+(11a26)x2+(5a233)x15=ax317x2+bx15Comparingcoefficients:11a26=17a=2211=25a233=bb=5(2)662=38
Commented by Tawa11 last updated on 23/Oct/21
Weldone sir
Weldonesir
Commented by Rasheed.Sindhi last updated on 23/Oct/21
Thanks miss!  I like your encouraging!
Thanksmiss!Ilikeyourencouraging!
Answered by Rasheed.Sindhi last updated on 23/Oct/21
2x^2 +11x+5  is factor of  ax^3 −17x^2 +bx−15;  a=?,b=?_(−)   Let the other factor is cx+d  ▶(2x^2 +11x+5)(cx+d)            =ax^3 −17x^2 +bx−15  ▶2cx^3 +(11c+2d)x^2 +(5c+11d)x+5d            =ax^3 −17x^2 +bx−15  Comparing coefficients:  ▶2c=a_((i))  , 11c+2d_(           (ii)  ) =−17,        5c+11d=b_((iii))  , 5d=−15_((iv))   ▶(iv)⇒d=((−15)/5)=−3,      (ii)⇒11c+2(−3)=−17⇒c=−1       (i)⇒a=2(−1)=−2      (iii)⇒b=5(−1)+11(−3)=−38
2x2+11x+5isfactorofax317x2+bx15;a=?,b=?Lettheotherfactoriscx+d(2x2+11x+5)(cx+d)=ax317x2+bx152cx3+(11c+2d)x2+(5c+11d)x+5d=ax317x2+bx15Comparingcoefficients:2c=a(i),11c+2d=17(ii),5c+11d=b(iii),5d=15(iv)(iv)d=155=3,(ii)11c+2(3)=17c=1(i)a=2(1)=2(iii)b=5(1)+11(3)=38
Commented by cortano last updated on 23/Oct/21
yes sir. i got the same result
yessir.igotthesameresult
Commented by cortano last updated on 23/Oct/21
Answered by Rasheed.Sindhi last updated on 23/Oct/21
P(x)=ax^3 −17x^2 +bx−15  D(x)=2x^2 +11x+5 ; a=?,b=?          _(−)   ▶Two roots of P(x)=0 are also roots  of D(x):            2x^2 +11x+5=0           (x+5)(2x+1)=0            x=−5 ∣ x=−(1/2)  ▶Let third root is α  P(x)=ax^3 −17x^2 +bx−15                =(x+5)(x+(1/2))(x−α)   ▶This is an identity so it′s correct  for every value of x:   ⧫   x=−5       (LHS=0 for x=−5)  a(−5)^3 −17(−5)^2 +b(−5)−15=0  −125a−425−5b−15=0        25a+85+b+3=0       25a+b=−88.................(i)  ⧫   x=−1/2    (LHS=0 for x=−1/2)   a(−(1/2))^3 −17(−(1/2))^2 +b(−(1/2))−15=0    −(1/8)a−((17)/4)−(1/2)b−15=0        a+34+4b+120=0       a+4b=−154..................(ii)  ▶4(i)−(ii)⇒99a=−352+154=−198                   a=−2  b=−88−25a=−88−25(−2)=−38                         b=−38
P(x)=ax317x2+bx15D(x)=2x2+11x+5;a=?,b=?TworootsofP(x)=0arealsorootsofD(x):2x2+11x+5=0(x+5)(2x+1)=0x=5x=12LetthirdrootisαP(x)=ax317x2+bx15=(x+5)(x+12)(xα)Thisisanidentitysoitscorrectforeveryvalueofx:x=5(LHS=0forx=5)a(5)317(5)2+b(5)15=0125a4255b15=025a+85+b+3=025a+b=88..(i)x=1/2(LHS=0forx=1/2)a(12)317(12)2+b(12)15=018a17412b15=0a+34+4b+120=0a+4b=154(ii)4(i)(ii)99a=352+154=198a=2b=8825a=8825(2)=38b=38
Answered by ajfour last updated on 23/Oct/21
2ax^3 +11ax^2 +5ax            +2px^2 +11px+5p  =2ax^3 −34x^2 +2bx−30  ⇒  11a+2p=−34          5a+11p=2b          5p=−30  so   11a=−22  ⇒  a=−2          2b=−66−10 ⇒  b=−38    (.^�   .^� _(-_(∣  ∣) ) ^(⌢) )    (._( (√))   ._( (√))  )∫
2ax3+11ax2+5ax+2px2+11px+5p=2ax334x2+2bx3011a+2p=345a+11p=2b5p=30so11a=22a=22b=6610b=38(.^.^)(..)

Leave a Reply

Your email address will not be published. Required fields are marked *