Menu Close

if-2x-3y-2020-find-maximum-value-3x-2y-for-x-and-natural-number-




Question Number 84188 by jagoll last updated on 10/Mar/20
if 2x+3y = 2020?  find maximum value 3x+2y for x and natural  number
$$\mathrm{if}\:\mathrm{2x}+\mathrm{3y}\:=\:\mathrm{2020}? \\ $$$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{3x}+\mathrm{2y}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{natural} \\ $$$$\mathrm{number} \\ $$
Commented by jagoll last updated on 10/Mar/20
this diopthantine equation ?
$$\mathrm{this}\:\mathrm{diopthantine}\:\mathrm{equation}\:? \\ $$
Commented by jagoll last updated on 10/Mar/20
yes. my answer is correct. but my way  is different with you way sir
$$\mathrm{yes}.\:\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{correct}.\:\mathrm{but}\:\mathrm{my}\:\mathrm{way} \\ $$$$\mathrm{is}\:\mathrm{different}\:\mathrm{with}\:\mathrm{you}\:\mathrm{way}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 10/Mar/20
x=−3k+1007≥1  y=2k+2≥1  ⇒0≤k≤335    3x+2y=3(−3k+1007)+2(2k+2)  =3025−5k ≤3025  =3025−5k ≥1350    i.e. maximum of 3x+2y is 3025.  i.e. minimum of 3x+2y is 1350.
$${x}=−\mathrm{3}{k}+\mathrm{1007}\geqslant\mathrm{1} \\ $$$${y}=\mathrm{2}{k}+\mathrm{2}\geqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{0}\leqslant{k}\leqslant\mathrm{335} \\ $$$$ \\ $$$$\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{3}\left(−\mathrm{3}{k}+\mathrm{1007}\right)+\mathrm{2}\left(\mathrm{2}{k}+\mathrm{2}\right) \\ $$$$=\mathrm{3025}−\mathrm{5}{k}\:\leqslant\mathrm{3025} \\ $$$$=\mathrm{3025}−\mathrm{5}{k}\:\geqslant\mathrm{1350} \\ $$$$ \\ $$$${i}.{e}.\:{maximum}\:{of}\:\mathrm{3}{x}+\mathrm{2}{y}\:{is}\:\mathrm{3025}. \\ $$$${i}.{e}.\:{minimum}\:{of}\:\mathrm{3}{x}+\mathrm{2}{y}\:{is}\:\mathrm{1350}. \\ $$
Commented by mr W last updated on 11/Mar/20
yes. there are many ways to solve.  i not only wanted to know the   minimum and maximum, but also  wanted to know the general solution  of the equation and how many solutions  it has. therefore i selected this way.
$${yes}.\:{there}\:{are}\:{many}\:{ways}\:{to}\:{solve}. \\ $$$${i}\:{not}\:{only}\:{wanted}\:{to}\:{know}\:{the}\: \\ $$$${minimum}\:{and}\:{maximum},\:{but}\:{also} \\ $$$${wanted}\:{to}\:{know}\:{the}\:{general}\:{solution} \\ $$$${of}\:{the}\:{equation}\:{and}\:{how}\:{many}\:{solutions} \\ $$$${it}\:{has}.\:{therefore}\:{i}\:{selected}\:{this}\:{way}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *