Menu Close

if-2x-a-x-lt-3-x-2-4-3-x-lt-2-x-2-ax-b-x-2-find-3a-b-




Question Number 147432 by mathdanisur last updated on 20/Jul/21
if   { ((2x + a  ;  x < −3)),((x^2  - 4  ;  −3 ≤ x < 2)),((x^2  + ax + b  ;  x ≥ 2)) :}  find   3a - b = ?
$${if}\:\:\begin{cases}{\mathrm{2}{x}\:+\:{a}\:\:;\:\:{x}\:<\:−\mathrm{3}}\\{{x}^{\mathrm{2}} \:-\:\mathrm{4}\:\:;\:\:−\mathrm{3}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{{x}^{\mathrm{2}} \:+\:{ax}\:+\:{b}\:\:;\:\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$${find}\:\:\:\mathrm{3}{a}\:-\:{b}\:=\:? \\ $$
Answered by liberty last updated on 21/Jul/21
(•) lim_(x→−3)  f(x)=lim_(x→−3) (2x+a)=lim_(x→−3) (x^2 −4)  ⇒ a−6=5 ; a=11  (•)lim_(x→2) (x^2 −4)=lim_(x→2) (x^2 +11x+b)  ⇒0 = 4+22+b ; b=−26  ⇔ 3a−b=33+26=59
$$\left(\bullet\right)\:\underset{{x}\rightarrow−\mathrm{3}} {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow−\mathrm{3}} {\mathrm{lim}}\left(\mathrm{2}{x}+{a}\right)=\underset{{x}\rightarrow−\mathrm{3}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right) \\ $$$$\Rightarrow\:{a}−\mathrm{6}=\mathrm{5}\:;\:{a}=\mathrm{11} \\ $$$$\left(\bullet\right)\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right)=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} +\mathrm{11}{x}+{b}\right) \\ $$$$\Rightarrow\mathrm{0}\:=\:\mathrm{4}+\mathrm{22}+{b}\:;\:{b}=−\mathrm{26} \\ $$$$\Leftrightarrow\:\mathrm{3}{a}−{b}=\mathrm{33}+\mathrm{26}=\mathrm{59} \\ $$
Commented by mathdanisur last updated on 21/Jul/21
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *