Menu Close

If-3-x-1-find-the-value-of-x-




Question Number 191203 by otchereabdullai last updated on 20/Apr/23
 If  3^x =−1 find the value of x
If3x=1findthevalueofx
Answered by Frix last updated on 20/Apr/23
3^x =−1  e^(xln 3) =e^(i(2n+1)π)   xln 3 =i(2n+1)π  x=i(((2n+1)π)/(ln 3))
3x=1exln3=ei(2n+1)πxln3=i(2n+1)πx=i(2n+1)πln3
Answered by Skabetix last updated on 20/Apr/23
3^x =i^2   xln(3)=ln(i^2 )  x=((ln(i^2 ))/(ln(3)))
3x=i2xln(3)=ln(i2)x=ln(i2)ln(3)
Commented by Skabetix last updated on 21/Apr/23
■ ln(i)=ln((−1)^(1/2) )=(1/2)ln(−1)=(1/2)×πi  so ln(i^2 )=2×(1/2)×πi=πi
◼ln(i)=ln((1)12)=12ln(1)=12×πisoln(i2)=2×12×πi=πi
Commented by Frix last updated on 21/Apr/23
The value of ln (i^2 ) =?
Thevalueofln(i2)=?
Answered by anr0h3 last updated on 21/Apr/23
  −1=e^(i∙π)   3^x =e^(i∙π)   ln(3^x )=ln(e^(i∙π) )  x∙ln(3)=i∙π  x=((((√(−1)))∙(π))/(ln(3)))
1=eiπ3x=eiπln(3x)=ln(eiπ)xln(3)=iπx=(1)(π)ln(3)
Commented by Frix last updated on 21/Apr/23
−1=e^((2n+1)πi)   ln (−1) =(2n+1)πi  Complex logaritms are not unique  [why do you use (√(−1)) instead of i at the end?]
1=e(2n+1)πiln(1)=(2n+1)πiComplexlogaritmsarenotunique[whydoyouuse1insteadofiattheend?]
Commented by anr0h3 last updated on 21/Apr/23
that's correct, ln(-1) = ln(i^2) and ln(i^2)=(2n+1)πi

Leave a Reply

Your email address will not be published. Required fields are marked *