Menu Close

if-3-x-24-and-2-y-36-find-4-x-1-y-4-x-




Question Number 145548 by mathdanisur last updated on 05/Jul/21
if  3^x =24  and  2^y =36  find   (4^((x-1)∙y) /4^x ) = ?
if3x=24and2y=36find4(x1)y4x=?
Answered by Ar Brandon last updated on 06/Jul/21
(4^((x−1)y) /4^x )=(2^(2y(x−1)) /4^x )=((36^(2(x−1)) )/4^x )=(((4×9)^(2x−2) )/4^x )                 =4^(x−2) ×3^(4x−4) =(4^x /(16))×(3^(4x) /(81))=(4^x /(16))×((24^4 )/(81))                 =4^(log_3 24) ×2^8  =2^(2log_3 24+8)
4(x1)y4x=22y(x1)4x=362(x1)4x=(4×9)2x24x=4x2×34x4=4x16×34x81=4x16×24481=4log324×28=22log324+8
Answered by imjagoll last updated on 06/Jul/21
from 2^y = 36 & 3^x =24   ⇒(3^(x−1) )^y =( 2^3 )^y    ⇒3^(xy−y) =36^3  ⇒xy−y=log _3 (36)^3   ⇒4^(xy−y)  = 4^(log _3 (36)^3 )    ⇒4^x =4^(log _3 (24))   ⇒(4^(xy−y) /4^x ) = 4^(log _3 (((36^3 )/(24)))) =4^(log _3 (1944))   ⇒1944^(log _3 (4)) =(2^3 ×3^5 )^(log _3 (4))   = 2^(3.log _3 (4)) ×3^(5.log _3 (4))   = 4^5 ×2^(6.log _3 (2))  ≈14,121.233767
from2y=36&3x=24(3x1)y=(23)y3xyy=363xyy=log3(36)34xyy=4log3(36)34x=4log3(24)4xyy4x=4log3(36324)=4log3(1944)1944log3(4)=(23×35)log3(4)=23.log3(4)×35.log3(4)=45×26.log3(2)14,121.233767

Leave a Reply

Your email address will not be published. Required fields are marked *