Menu Close

If-3x-1-2x-6-find-8x-3-1-27x-3-




Question Number 119713 by som(math1967) last updated on 26/Oct/20
If 3x+(1/(2x))=6 find 8x^3 +(1/(27x^3 ))
$$\mathrm{If}\:\mathrm{3x}+\frac{\mathrm{1}}{\mathrm{2x}}=\mathrm{6}\:\mathrm{find}\:\mathrm{8x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{27x}^{\mathrm{3}} } \\ $$
Commented by bemath last updated on 26/Oct/20
santuyy
$${santuyy} \\ $$
Commented by Jamshidbek2311 last updated on 26/Oct/20
3x+(1/(2x))=6 ∣×(2/3)  ⇒  2x+(1/(3x))=4  8x^3 +(1/(27x^3 ))=(2x+(1/(3x)))^3 −3×2x×(1/(3x))(2x+(1/(3x)))=  =4^3 −2×4=64−8=56
$$\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{2}{x}}=\mathrm{6}\:\mid×\frac{\mathrm{2}}{\mathrm{3}}\:\:\Rightarrow\:\:\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}=\mathrm{4} \\ $$$$\mathrm{8}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{27}{x}^{\mathrm{3}} }=\left(\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}\right)^{\mathrm{3}} −\mathrm{3}×\mathrm{2}{x}×\frac{\mathrm{1}}{\mathrm{3}{x}}\left(\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}\right)= \\ $$$$=\mathrm{4}^{\mathrm{3}} −\mathrm{2}×\mathrm{4}=\mathrm{64}−\mathrm{8}=\mathrm{56} \\ $$$$ \\ $$
Commented by som(math1967) last updated on 26/Oct/20
Thanks
$$\mathrm{Thanks} \\ $$
Answered by Dwaipayan Shikari last updated on 26/Oct/20
8x^3 +(1/(27x^3 ))=(2x+(1/(3x)))^3 −2(2x+(1/(3x)))=4^3 −2.4=56  ((6x^2 +1)/(2x))=6  ⇒((6x^2 +1)/(3x))=4⇒2x+(1/(3x))=4
$$\mathrm{8}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{27}{x}^{\mathrm{3}} }=\left(\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}\right)=\mathrm{4}^{\mathrm{3}} −\mathrm{2}.\mathrm{4}=\mathrm{56} \\ $$$$\frac{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{x}}=\mathrm{6} \\ $$$$\Rightarrow\frac{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{3}{x}}=\mathrm{4}\Rightarrow\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}{x}}=\mathrm{4} \\ $$$$ \\ $$
Commented by som(math1967) last updated on 26/Oct/20
Very nice thank you
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *