Menu Close

If-4-log-x-2y-4-log-x-2y-1-Minimum-value-of-x-y-is-




Question Number 161166 by naka3546 last updated on 13/Dec/21
If  ^4 log (x+2y) +^4 log (x−2y) = 1 .  Minimum  value  of  ∣x∣ − ∣y∣   is  ... ?
$${If}\:\:\:^{\mathrm{4}} \mathrm{log}\:\left({x}+\mathrm{2}{y}\right)\:+\:^{\mathrm{4}} \mathrm{log}\:\left({x}−\mathrm{2}{y}\right)\:=\:\mathrm{1}\:. \\ $$$${Minimum}\:\:{value}\:\:{of}\:\:\mid{x}\mid\:−\:\mid{y}\mid\:\:\:{is}\:\:…\:? \\ $$
Answered by mr W last updated on 13/Dec/21
(x+2y)(x−2y)=4  ((x/2))^2 −y^2 =1 ⇒hyperbola  2((x/2))(1/2)−2y(dy/dx)=0  2((x/2))(1/2)−2y×1=0  y=(x/4)  ((x/2))^2 −((x/4))^2 =1  ⇒x=±(4/( (√3)))  ⇒y=±(1/( (√3)))  ∣x∣−∣y∣=(4/( (√3)))−(1/( (√3)))=(√3) =minimun
$$\left({x}+\mathrm{2}{y}\right)\left({x}−\mathrm{2}{y}\right)=\mathrm{4} \\ $$$$\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow{hyperbola} \\ $$$$\mathrm{2}\left(\frac{{x}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{y}\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\mathrm{2}\left(\frac{{x}}{\mathrm{2}}\right)\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}{y}×\mathrm{1}=\mathrm{0} \\ $$$${y}=\frac{{x}}{\mathrm{4}} \\ $$$$\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{{x}}{\mathrm{4}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{x}=\pm\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{y}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mid{x}\mid−\mid{y}\mid=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}=\sqrt{\mathrm{3}}\:={minimun} \\ $$
Commented by naka3546 last updated on 13/Dec/21
Thank  you,  sir.
$${Thank}\:\:{you},\:\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *