Menu Close

If-4a-2-5b-2-6a-1-0-and-the-line-ax-by-1-0-touches-a-fixed-circle-then-the-correct-statement-is-1-centre-of-circle-is-at-3-0-2-radius-of-circle-is-3-3-circle-passes-through-1-0-4-none




Question Number 32679 by rahul 19 last updated on 31/Mar/18
If 4a^2 −5b^2 +6a+1=0 and the line  ax+by+1=0 touches a fixed circle  then the correct statement is :  1) centre of circle is at (3,0)  2) radius of circle is (√3).  3) circle passes through (1,0).  4) none of these.
$${If}\:\mathrm{4}{a}^{\mathrm{2}} −\mathrm{5}{b}^{\mathrm{2}} +\mathrm{6}{a}+\mathrm{1}=\mathrm{0}\:{and}\:{the}\:{line} \\ $$$${ax}+{by}+\mathrm{1}=\mathrm{0}\:{touches}\:{a}\:{fixed}\:{circle} \\ $$$${then}\:{the}\:{correct}\:{statement}\:{is}\:: \\ $$$$\left.\mathrm{1}\right)\:{centre}\:{of}\:{circle}\:{is}\:{at}\:\left(\mathrm{3},\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{radius}\:{of}\:{circle}\:{is}\:\sqrt{\mathrm{3}}. \\ $$$$\left.\mathrm{3}\right)\:{circle}\:{passes}\:{through}\:\left(\mathrm{1},\mathrm{0}\right). \\ $$$$\left.\mathrm{4}\right)\:{none}\:{of}\:{these}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *