Menu Close

if-4z-z-11-z-5-find-2z-z-




Question Number 149060 by mathdanisur last updated on 02/Aug/21
if   4z(√z) − 11(√z) = 5  find   2z − (√z) = ?
$${if}\:\:\:\mathrm{4}{z}\sqrt{{z}}\:−\:\mathrm{11}\sqrt{{z}}\:=\:\mathrm{5} \\ $$$${find}\:\:\:\mathrm{2}{z}\:−\:\sqrt{{z}}\:=\:? \\ $$
Answered by bramlexs22 last updated on 02/Aug/21
⇒(√z) = u   ⇒4z(√z)−(√z) = 5+10(√z)  ⇒(√z) (4z−1)=5(1+2(√z) )  ⇒(√z) (2(√z)−1)(2(√z)+1)=5(2(√z)+1)  ⇒(2(√z)+1){(√z) (2(√z)−1)−5}=0  2(√z) +1 = 0 ⇇ not possible  (√z) (2(√z)−1)−5=0  ⇒2z−(√z) = (√z) (2(√z)−1)= 5
$$\Rightarrow\sqrt{\mathrm{z}}\:=\:\mathrm{u}\: \\ $$$$\Rightarrow\mathrm{4z}\sqrt{\mathrm{z}}−\sqrt{\mathrm{z}}\:=\:\mathrm{5}+\mathrm{10}\sqrt{\mathrm{z}} \\ $$$$\Rightarrow\sqrt{\mathrm{z}}\:\left(\mathrm{4z}−\mathrm{1}\right)=\mathrm{5}\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{z}}\:\right) \\ $$$$\Rightarrow\sqrt{\mathrm{z}}\:\left(\mathrm{2}\sqrt{\mathrm{z}}−\mathrm{1}\right)\left(\mathrm{2}\sqrt{\mathrm{z}}+\mathrm{1}\right)=\mathrm{5}\left(\mathrm{2}\sqrt{\mathrm{z}}+\mathrm{1}\right) \\ $$$$\Rightarrow\left(\mathrm{2}\sqrt{\mathrm{z}}+\mathrm{1}\right)\left\{\sqrt{\mathrm{z}}\:\left(\mathrm{2}\sqrt{\mathrm{z}}−\mathrm{1}\right)−\mathrm{5}\right\}=\mathrm{0} \\ $$$$\mathrm{2}\sqrt{\mathrm{z}}\:+\mathrm{1}\:=\:\mathrm{0}\:\leftleftarrows\:\mathrm{not}\:\mathrm{possible} \\ $$$$\sqrt{\mathrm{z}}\:\left(\mathrm{2}\sqrt{\mathrm{z}}−\mathrm{1}\right)−\mathrm{5}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2z}−\sqrt{\mathrm{z}}\:=\:\sqrt{\mathrm{z}}\:\left(\mathrm{2}\sqrt{\mathrm{z}}−\mathrm{1}\right)=\:\mathrm{5} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 02/Aug/21
Thank You Ser
$${Thank}\:{You}\:{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *