Menu Close

If-5-2-3-5-7-3-3-2-5-7-9-4-3-3-then-find-the-value-of-2-4-




Question Number 22547 by Tinkutara last updated on 20/Oct/17
If α = (5/(2!3)) + ((5.7)/(3!3^2 )) + ((5.7.9)/(4!3^3 )) ,... then find  the value of α^2  + 4α.
$$\mathrm{If}\:\alpha\:=\:\frac{\mathrm{5}}{\mathrm{2}!\mathrm{3}}\:+\:\frac{\mathrm{5}.\mathrm{7}}{\mathrm{3}!\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{5}.\mathrm{7}.\mathrm{9}}{\mathrm{4}!\mathrm{3}^{\mathrm{3}} }\:,…\:\mathrm{then}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\alpha^{\mathrm{2}} \:+\:\mathrm{4}\alpha. \\ $$
Answered by ajfour last updated on 20/Oct/17
(1+x)^n =1+nx+((n(n−1))/(2!))x^2 +...  let x=−(2/3)  ,n→−n  (1+x)^(−n) ∣_(x=−(2/3)) =1+((2n)/3)+((2n(2n+2))/(2!3^2 ))                       +((2n(2n+2)(2n+4))/(3!3^3 ))+..  let n=3/2  ⇒(1−(2/3))^(−3/2) =1+1+(5/(2!3))+((5.7)/(3!3^2 ))+..  ⇒ 3(√3) =2+α    α=3(√3)−2    α^2 +4α=α(α+4)        =(3(√3)−2)(3(√3)+2)        =23 .
$$\left(\mathrm{1}+{x}\right)^{{n}} =\mathrm{1}+{nx}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +… \\ $$$${let}\:{x}=−\frac{\mathrm{2}}{\mathrm{3}}\:\:,{n}\rightarrow−{n} \\ $$$$\left(\mathrm{1}+{x}\right)^{−{n}} \mid_{{x}=−\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{1}+\frac{\mathrm{2}{n}}{\mathrm{3}}+\frac{\mathrm{2}{n}\left(\mathrm{2}{n}+\mathrm{2}\right)}{\mathrm{2}!\mathrm{3}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{2}{n}\left(\mathrm{2}{n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{4}\right)}{\mathrm{3}!\mathrm{3}^{\mathrm{3}} }+.. \\ $$$${let}\:\boldsymbol{{n}}=\mathrm{3}/\mathrm{2} \\ $$$$\Rightarrow\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)^{−\mathrm{3}/\mathrm{2}} =\mathrm{1}+\mathrm{1}+\frac{\mathrm{5}}{\mathrm{2}!\mathrm{3}}+\frac{\mathrm{5}.\mathrm{7}}{\mathrm{3}!\mathrm{3}^{\mathrm{2}} }+.. \\ $$$$\Rightarrow\:\mathrm{3}\sqrt{\mathrm{3}}\:=\mathrm{2}+\alpha \\ $$$$\:\:\alpha=\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{2} \\ $$$$\:\:\alpha^{\mathrm{2}} +\mathrm{4}\alpha=\alpha\left(\alpha+\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{2}\right)\left(\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:=\mathrm{23}\:. \\ $$$$ \\ $$
Commented by ajfour last updated on 20/Oct/17
seeking 𝛂 .
$${seeking}\:\boldsymbol{\alpha}\:. \\ $$
Commented by Tinkutara last updated on 20/Oct/17
How you have written x=−(2/3), n=(3/2)?
$$\mathrm{How}\:\mathrm{you}\:\mathrm{have}\:\mathrm{written}\:{x}=−\frac{\mathrm{2}}{\mathrm{3}},\:{n}=\frac{\mathrm{3}}{\mathrm{2}}? \\ $$
Commented by Tinkutara last updated on 03/Jan/18
Thanks Sir!
Commented by ajfour last updated on 03/Jan/18
α need to be generated, 3, 3^2 , 3^3 ,..  in denominator coaxed me to  put x=(2/3) , ...
$$\alpha\:{need}\:{to}\:{be}\:{generated},\:\mathrm{3},\:\mathrm{3}^{\mathrm{2}} ,\:\mathrm{3}^{\mathrm{3}} ,.. \\ $$$${in}\:{denominator}\:{coaxed}\:{me}\:{to} \\ $$$${put}\:{x}=\frac{\mathrm{2}}{\mathrm{3}}\:,\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *