Menu Close

If-6-3x-is-the-geometric-mean-between-the-integer-x-2-2-and-2-what-are-the-values-of-x-




Question Number 117082 by bobhans last updated on 09/Oct/20
If 6−3x is the geometric mean between  the integer x^2 +2 and 2^�  what are the   values of x ?
$$\mathrm{If}\:\mathrm{6}−\mathrm{3x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{geometric}\:\mathrm{mean}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{integer}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2}\:\mathrm{and}\:\bar {\mathrm{2}}\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\: \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:? \\ $$
Answered by bemath last updated on 09/Oct/20
geometric mean ⇒ (√((x^2 +2).2)) = 6−3x  the equation valid for 6−3x ≥0  or x ≤ 2.  squaring both sides gives   2x^2 +4 = 9x^2 −36x+36  7x^2 −36x+32 = 0  (7x−8)(x−4)=0   { ((x=(8/7)←accept)),((x=4 ←rejected)) :}  the value of x is (8/7).
$$\mathrm{geometric}\:\mathrm{mean}\:\Rightarrow\:\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right).\mathrm{2}}\:=\:\mathrm{6}−\mathrm{3x} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{valid}\:\mathrm{for}\:\mathrm{6}−\mathrm{3x}\:\geqslant\mathrm{0} \\ $$$$\mathrm{or}\:\mathrm{x}\:\leqslant\:\mathrm{2}. \\ $$$$\mathrm{squaring}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{gives}\: \\ $$$$\mathrm{2x}^{\mathrm{2}} +\mathrm{4}\:=\:\mathrm{9x}^{\mathrm{2}} −\mathrm{36x}+\mathrm{36} \\ $$$$\mathrm{7x}^{\mathrm{2}} −\mathrm{36x}+\mathrm{32}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{7x}−\mathrm{8}\right)\left(\mathrm{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{x}=\frac{\mathrm{8}}{\mathrm{7}}\leftarrow\mathrm{accept}}\\{\mathrm{x}=\mathrm{4}\:\leftarrow\mathrm{rejected}}\end{cases} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{is}\:\frac{\mathrm{8}}{\mathrm{7}}. \\ $$
Commented by bemath last updated on 09/Oct/20
i think this question not consisten  because x=(8/7) not a integer
$$\mathrm{i}\:\mathrm{think}\:\mathrm{this}\:\mathrm{question}\:\mathrm{not}\:\mathrm{consisten} \\ $$$$\mathrm{because}\:\mathrm{x}=\frac{\mathrm{8}}{\mathrm{7}}\:\mathrm{not}\:\mathrm{a}\:\mathrm{integer} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *